Mostrar el registro sencillo del ítem
dc.contributor.author
Godoy, Yamile Alejandra
dc.contributor.author
Salvai, Marcos Luis
dc.date.available
2019-11-20T16:29:29Z
dc.date.issued
2018-04
dc.identifier.citation
Godoy, Yamile Alejandra; Salvai, Marcos Luis; Polar factorization of conformal and projective maps of the sphere in the sense of optimal mass transport; Hebrew Univ Magnes Press; Israel Journal Of Mathematics; 225; 1; 4-2018; 465-478
dc.identifier.issn
0021-2172
dc.identifier.uri
http://hdl.handle.net/11336/89285
dc.description.abstract
Let M be a compact Riemannian manifold and let μ,d be the associated measure and distance on M. Robert McCann, generalizing results for the Euclidean case by Yann Brenier, obtained the polar factorization of Borel maps S : M -> M pushing forward μ to a measure ν: each S factors uniquely a.e. into the composition S = T circ U, where U : M -> M is volume preserving and T : M -> M is the optimal map transporting μ to ν with respect to the cost function d^2/2. In this article we study the polar factorization of conformal and projective maps of the sphere S^n. For conformal maps, which may be identified with elements of the identity component of O(1,n+1), we prove that the polar factorization in the sense of optimal mass transport coincides with the algebraic polar factorization (Cartan decomposition) of this Lie group. For the projective case, where the group GL_+(n+1) is involved, we find necessary and sufficient conditions for these two factorizations to agree.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Hebrew Univ Magnes Press
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
OPTIMAL MASS TRANSPORT
dc.subject
CONFORMAL MAP
dc.subject
PROJECTIVE MAP
dc.subject
LAGRANGIAN SUBMANIFOLD
dc.subject.classification
Matemática Pura
dc.subject.classification
Matemáticas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Polar factorization of conformal and projective maps of the sphere in the sense of optimal mass transport
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2019-10-10T19:02:51Z
dc.identifier.eissn
1565-8511
dc.journal.volume
225
dc.journal.number
1
dc.journal.pagination
465-478
dc.journal.pais
Israel
dc.journal.ciudad
Jerusalem
dc.description.fil
Fil: Godoy, Yamile Alejandra. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina
dc.description.fil
Fil: Salvai, Marcos Luis. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina
dc.journal.title
Israel Journal Of Mathematics
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s11856-018-1673-5
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/s11856-018-1673-5
Archivos asociados