Artículo
A Posteriori Error Estimators for Hierarchical B-Spline Discretizations
Fecha de publicación:
07/2018
Editorial:
World Scientific
Revista:
Mathematical Models And Methods In Applied Sciences
ISSN:
0218-2025
e-ISSN:
1793-6314
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
In this paper we develop function-based a posteriori error estimators for the solution of linear second order elliptic problems considering hierarchical spline spaces for the Galerkin discretization. We obtain a global upper bound for the energy error over arbitrary hierarchical mesh configurations which simplifies the implementation of adaptive refinement strategies. The theory hinges on some weighted Poincaré type inequalities where the B-spline basis functions are the weights appearing in the norms. Such inequalities are derived following the lines in (Veeser and Verfürth, 2009), where the case of standard finite elements is considered. Additionally, we present numerical experiments that show the efficiency of the error estimators independently of the degree of the splines used for the discretization, together with an adaptive algorithm guided by these local estimators that yields optimal meshes and rates of convergence, exhibiting an excellent performance.
Palabras clave:
A posteriori error estimators
,
Adaptivity
,
Hierarchical splines
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CCT - SANTA FE)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - SANTA FE
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - SANTA FE
Citación
Buffa, Annalisa; Garau, Eduardo Mario; A Posteriori Error Estimators for Hierarchical B-Spline Discretizations; World Scientific; Mathematical Models And Methods In Applied Sciences; 28; 8; 7-2018; 1453-1480
Compartir
Altmétricas