Artículo
Cohomology and extensions of braces
Fecha de publicación:
09/2016
Editorial:
Pacific Journal Mathematics
Revista:
Pacific Journal Of Mathematics
ISSN:
0030-8730
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Braces and linear cycle sets are algebraic structures playing a major role in the classification of involutive set-theoretic solutions to the Yang-Baxter equation. This paper introduces two versions of their (co)homology theories. These theories mix the Harrison (co)homology for the abelian group structure and the (co)homology theory for general cycle sets, developed earlier by the authors. Different classes of brace extensions are completely classified in terms of second cohomology groups.
Palabras clave:
BRACE
,
COHOMOLOGY
,
CYCLE SET
,
EXTENSION
,
YANG-BAXTER EQUATION
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IMAS)
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Citación
Lebed, Victoria; Vendramin, Claudio Leandro; Cohomology and extensions of braces; Pacific Journal Mathematics; Pacific Journal Of Mathematics; 284; 1; 9-2016; 191-212
Compartir
Altmétricas