Mostrar el registro sencillo del ítem
dc.contributor.author
Xu, Zhenghua
dc.contributor.author
Tifrea-Marciuska, Oana
dc.contributor.author
Lukasiewicz, Thomas
dc.contributor.author
Martinez, Maria Vanina
dc.contributor.author
Simari, Gerardo
dc.contributor.author
Chen, Cheng
dc.date.available
2019-11-15T03:12:13Z
dc.date.issued
2018-06-26
dc.identifier.citation
Xu, Zhenghua; Tifrea-Marciuska, Oana; Lukasiewicz, Thomas; Martinez, Maria Vanina; Simari, Gerardo; et al.; Lightweight Tag-Aware Personalized Recommendation on the Social Web Using Ontological Similarity; Institute of Electrical and Electronics Engineers Inc.; IEEE Access; 6; 26-6-2018; 35590-35610
dc.identifier.issn
2169-3536
dc.identifier.uri
http://hdl.handle.net/11336/89025
dc.description.abstract
With the rapid growth of social tagging systems, many research efforts are being put intopersonalized search and recommendation using social tags (i.e., folksonomies). As users can freely choosetheir own vocabulary, social tags can be very ambiguous (for instance, due to the use of homonymsor synonyms). Machine learning techniques (such as clustering and deep neural networks) are usuallyapplied to overcome this tag ambiguity problem. However, the machine-learning-based solutions alwaysneed very powerful computing facilities to train recommendation models from a large amount of data,so they are inappropriate to be used in lightweight recommender systems. In this work, we propose anontological similarity to tackle the tag ambiguity problem without the need of model training by usingcontextual information. The novelty of this ontological similarity is that it first leverages external domainontologies to disambiguate tag information, and then semantically quantifies the relevance between userand item profiles according to the semantic similarity of the matching concepts of tags in the respectiveprofiles. Our experiments show that the proposed ontological similarity is semantically more accurate thanthe state-of-the-art similarity metrics, and can thus be applied to improve the performance of content-based tag-aware personalized recommendation on the Social Web. Consequently, as a model-training-freesolution, ontological similarity is a good disambiguation choice for lightweight recommender systems anda complement to machine-learning-based recommendation solutions.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Institute of Electrical and Electronics Engineers Inc.
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc/2.5/ar/
dc.subject
FOLKSONOMIES
dc.subject
ONTOLOGICAL SIMILARITY
dc.subject
PERSONALIZED RECOMMENDATION
dc.subject
SOCIAL TAGS
dc.subject.classification
Ciencias de la Computación
dc.subject.classification
Ciencias de la Computación e Información
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Lightweight Tag-Aware Personalized Recommendation on the Social Web Using Ontological Similarity
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2019-10-23T17:30:53Z
dc.journal.volume
6
dc.journal.pagination
35590-35610
dc.journal.pais
Estados Unidos
dc.journal.ciudad
New Jersey
dc.description.fil
Fil: Xu, Zhenghua. University of Oxford; Reino Unido
dc.description.fil
Fil: Tifrea-Marciuska, Oana. Bloomberg; Reino Unido
dc.description.fil
Fil: Lukasiewicz, Thomas. University of Oxford; Reino Unido
dc.description.fil
Fil: Martinez, Maria Vanina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias e Ingeniería de la Computación. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Instituto de Ciencias e Ingeniería de la Computación; Argentina
dc.description.fil
Fil: Simari, Gerardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias e Ingeniería de la Computación. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Instituto de Ciencias e Ingeniería de la Computación; Argentina
dc.description.fil
Fil: Chen, Cheng. China Academy of Electronics and Information Technology; China
dc.journal.title
IEEE Access
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://ieeexplore.ieee.org/document/8396258
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1109/ACCESS.2018.2850762
Archivos asociados