Mostrar el registro sencillo del ítem
dc.contributor.author
Paredes, José Nicolás
dc.contributor.author
Simari, Gerardo
dc.contributor.author
Martinez, Maria Vanina
dc.contributor.author
Falappa, Marcelo Alejandro
dc.date.available
2019-11-15T02:10:36Z
dc.date.issued
2018-07-27
dc.identifier.citation
Paredes, José Nicolás; Simari, Gerardo; Martinez, Maria Vanina; Falappa, Marcelo Alejandro; First Steps towards Data-Driven Adversarial Deduplication; MDPI AG; Information (Switzerland); 9; 8; 27-7-2018; 189-204
dc.identifier.issn
2078-2489
dc.identifier.uri
http://hdl.handle.net/11336/89020
dc.description.abstract
In traditional databases, the entity resolution problem (which is also known as deduplication)refers to the task of mapping multiple manifestations of virtual objects totheir corresponding real-worldentities. When addressing this problem, in both theory and practice, it is widely assumed that suchsets of virtual objects appear as the result of clerical errors, transliterations, missing or updatedattributes, abbreviations, and so forth. In this paper, we address this problem under the assumptionthat this situation is caused by malicious actors operating in domains in which they do not wishto be identified, such as hacker forums and markets in which the participants are motivated toremain semi-anonymous (though they wish to keep their true identities secret, they find it useful forcustomers to identify their products and services). We are therefore in the presence of a different, andeven more challenging, problem that we refer to as adversarial deduplication. In this paper, we studythis problem via examples that arise from real-world data on malicious hacker forums and marketsarising from collaborations with a cyber threat intelligence company focusing on understanding thiskind of behavior. We argue that it is very difficult—if not impossible—to find ground truth data onwhich to build solutions to this problem, and develop a set of preliminary experiments based ontraining machine learning classifiers that leverage text analysis to detect potential cases of duplicateentities. Our results are encouraging as a first step towards building tools that human analysts canuse to enhance their capabilities towards fighting cyber threats.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
MDPI AG
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by/2.5/ar/
dc.subject
ADVERSARIAL DEDUPLICATION
dc.subject
CYBER THREAT INTELLIGENCE
dc.subject
MACHINE LEARNING CLASSIFIERS
dc.subject.classification
Ciencias de la Computación
dc.subject.classification
Ciencias de la Computación e Información
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
First Steps towards Data-Driven Adversarial Deduplication
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2019-10-23T17:30:49Z
dc.journal.volume
9
dc.journal.number
8
dc.journal.pagination
189-204
dc.journal.pais
Suiza
dc.journal.ciudad
Basel
dc.description.fil
Fil: Paredes, José Nicolás. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias e Ingeniería de la Computación. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Instituto de Ciencias e Ingeniería de la Computación; Argentina
dc.description.fil
Fil: Simari, Gerardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias e Ingeniería de la Computación. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Instituto de Ciencias e Ingeniería de la Computación; Argentina. Arizona State University; Estados Unidos
dc.description.fil
Fil: Martinez, Maria Vanina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires; Argentina
dc.description.fil
Fil: Falappa, Marcelo Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias e Ingeniería de la Computación. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Instituto de Ciencias e Ingeniería de la Computación; Argentina
dc.journal.title
Information (Switzerland)
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/2078-2489/9/8/189
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.3390/info9080189
Archivos asociados