Artículo
Compact operators and algebraic K -theory for groups which act properly and isometrically on Hilbert space
Fecha de publicación:
01/2018
Editorial:
De Gruyter
Revista:
Journal Fur Die Reine Und Angewandte Mathematik
ISSN:
0075-4102
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
We prove the K-theoretic Farrell-Jones conjecture for groups with the Haagerup approximation property and coefficient rings and C ∗ C^{∗} -algebras which are stable with respect to compact operators. We use this and Higson-Kasparov's result that the Baum-Connes conjecture holds for such a group G, to show that the algebraic and the C ∗ C^{∗} -crossed product of G with a stable separable G- C ∗ C^{∗} -algebra have the same K-theory.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IMAS)
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Citación
Cortiñas, Guillermo Horacio; Tartaglia, Gisela; Compact operators and algebraic K -theory for groups which act properly and isometrically on Hilbert space; De Gruyter; Journal Fur Die Reine Und Angewandte Mathematik; 2018; 734; 1-2018; 265-292
Compartir
Altmétricas