Artículo
Homological invariants relating the super Jordan plane to the Virasoro algebra
Fecha de publicación:
08/2018
Editorial:
Academic Press Inc Elsevier Science
Revista:
Journal of Algebra
ISSN:
0021-8693
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Nichols algebras are an important tool for the classification of Hopf algebras. Within those with finite GK dimension, we study homological invariants of the super Jordan plane, that is, the Nichols algebra A=B(V(−1,2)). These invariants are Hochschild homology, the Hochschild cohomology algebra, the Lie structure of the first cohomology space – which is a Lie subalgebra of the Virasoro algebra – and its representations Hn(A,A) and also the Yoneda algebra. We prove that the algebra A is K2. Moreover, we prove that the Yoneda algebra of the bosonization A#kZ of A is also finitely generated, but not K2.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IMAS)
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Citación
Solotar, Andrea Leonor; Reca, Sebastián Gustavo; Homological invariants relating the super Jordan plane to the Virasoro algebra; Academic Press Inc Elsevier Science; Journal of Algebra; 507; 8-2018; 120-185
Compartir
Altmétricas