Mostrar el registro sencillo del ítem

dc.contributor.author
Rodríguez, Martín Alejandro  
dc.date.available
2019-11-13T22:24:59Z  
dc.date.issued
2014-03  
dc.identifier.citation
Rodríguez, Martín Alejandro; Anticipated degradation modes of metallic engineered barriers for high-level nuclear waste repositories; Springer; Journal Of Metals; 66; 3; 3-2014; 503-525  
dc.identifier.issn
0148-6608  
dc.identifier.uri
http://hdl.handle.net/11336/88829  
dc.description.abstract
Metallic engineered barriers must provide a period of absolute containment to high-level radioactive waste in geological repositories. Candidate materials include copper alloys, carbon steels, stainless steels, nickel alloys, and titanium alloys. The national programs of nuclear waste management have to identify and assess the anticipated degradation modes of the selected materials in the corresponding repository environment, which evolves in time. Commonly assessed degradation modes include general corrosion, localized corrosion, stress-corrosion cracking, hydrogen-assisted cracking, and microbiologically influenced corrosion. Laboratory testing and modeling in metallurgical and environmental conditions of similar and higher aggressiveness than those expected in service conditions are used to evaluate the corrosion resistance of the materials. This review focuses on the anticipated degradation modes of the selected or reference materials as corrosion-resistant barriers in nuclear repositories. These degradation modes depend not only on the selected alloy but also on the near-field environment. The evolution of the near-field environment varies for saturated and unsaturated repositories considering backfilled and unbackfilled conditions. In saturated repositories, localized corrosion and stress-corrosion cracking may occur in the initial aerobic stage, while general corrosion and hydrogen-assisted cracking are the main degradation modes in the anaerobic stage. Unsaturated repositories would provide an oxidizing environment during the entire repository lifetime. Microbiologically influenced corrosion may be avoided or minimized by selecting an appropriate backfill material. Radiation effects are negligible provided that a thick-walled container or an inner shielding container is used.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Springer  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
RESIDUO NUCLEARES  
dc.subject
REPOSITORIOS NUCLEARES  
dc.subject
BARRERAS INGENIERILES  
dc.subject
CORROSIÓN  
dc.subject.classification
Ingeniería de los Materiales  
dc.subject.classification
Ingeniería de los Materiales  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
Anticipated degradation modes of metallic engineered barriers for high-level nuclear waste repositories  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2019-10-28T14:34:23Z  
dc.identifier.eissn
1047-4838  
dc.journal.volume
66  
dc.journal.number
3  
dc.journal.pagination
503-525  
dc.journal.pais
Alemania  
dc.journal.ciudad
Warrendale  
dc.description.fil
Fil: Rodríguez, Martín Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de San Martín; Argentina. Comisión Nacional de Energía Atómica; Argentina  
dc.journal.title
Journal Of Metals  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/s11837-014-0873-7  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s11837-014-0873-7