Mostrar el registro sencillo del ítem

dc.contributor.author
Godoy, José Luis  
dc.contributor.author
Vega, Jorge Ruben  
dc.contributor.author
Marchetti, Jacinto Luis  
dc.date.available
2016-12-06T13:52:49Z  
dc.date.issued
2013-10  
dc.identifier.citation
Godoy, José Luis; Vega, Jorge Ruben; Marchetti, Jacinto Luis; A fault detection and diagnosis technique for multivariate processes using a PLS-decomposition of the measurement space; Elsevier Science; Chemometrics And Intelligent Laboratory Systems; 128; 10-2013; 25-36  
dc.identifier.issn
0169-7439  
dc.identifier.uri
http://hdl.handle.net/11336/8877  
dc.description.abstract
A newstatisticalmonitoring technique based on partial least squares (PLS) is proposed for fault detection and diagnosis inmultivariate processes that exhibit collinear measurements. A typical PLS regression (PLSR) modeling strategy is first extended by adding the projections of the model outputs to the latent space. Then, a PLSdecomposition of the measurements into four terms that belongs to four different subspaces is derived. In order to online monitor the PLS-projections in each subspace, new specific statistics with non-overlapped domains are combined into a single index able to detect process anomalies. To reach a complete diagnosis, a further decomposition of each statistic was defined as a sum of variable contributions. By adequately processing all this information, the technique is able to: i) detect an anomaly through a single combined index, ii) diagnose the anomaly class from the observed pattern of the four component statistics with respect to their respective confidence intervals, and iii) identify the disturbed variables based on the analysis of the main variable contributions to each of the four subspaces. The effectiveness observed in the simulated examples suggests the potential application of this technique to real production systems  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier Science  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Pls  
dc.subject
Process Monitoring  
dc.subject
Fault Detection  
dc.subject
Fault Diagnosis  
dc.subject
Fault Isolation  
dc.subject
Contribution Analysis  
dc.subject.classification
Otras Ingenierías y Tecnologías  
dc.subject.classification
Otras Ingenierías y Tecnologías  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
A fault detection and diagnosis technique for multivariate processes using a PLS-decomposition of the measurement space  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2016-12-02T15:58:48Z  
dc.journal.volume
128  
dc.journal.pagination
25-36  
dc.journal.pais
Países Bajos  
dc.journal.ciudad
Amsterdam  
dc.description.fil
Fil: Godoy, José Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Desarrollo Tecnológico Para la Industria Química (i); Argentina  
dc.description.fil
Fil: Vega, Jorge Ruben. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Desarrollo Tecnológico Para la Industria Química (i); Argentina  
dc.description.fil
Fil: Marchetti, Jacinto Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Desarrollo Tecnológico Para la Industria Química (i); Argentina  
dc.journal.title
Chemometrics And Intelligent Laboratory Systems  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.chemolab.2013.07.006  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S016974391300138X