Artículo
Weighted Inequalities for Schrödinger Type Singular Integrals
Fecha de publicación:
10/06/2019
Editorial:
Birkhauser Boston Inc
Revista:
Journal Of Fourier Analysis And Applications
ISSN:
1069-5869
e-ISSN:
1531-5851
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Related to the Schrödinger operator L= - Δ + V, the behaviour on Lp of several first and second order Riesz transforms was studied by Shen (Ann Inst Fourier (Grenoble) 45(2):513–546, 1995). Under his assumptions on V, a critical radius function ρ: X→ R+ can be associated, with the property that its variation is controlled by powers. Given such a function, we introduce a class of singular integral operators whose kernels have some extra decay related to ρ. We analyse their behaviour on weighted Lp and BMO-type spaces. Here, the weights as well as the regularity spaces depend only on the critical radius function. When our results are set back into the Schrödinger context, we obtain weighted inequalities for all the Riesz transforms initially appearing in Shen (1995). Concerning the action of Schrödinger singular integrals on regularity spaces, we extend some previous work of Ma et al.
Palabras clave:
REGULARITY SPACES
,
SCHRÖDINGER OPERATOR
,
WEIGHTS
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IMAL)
Articulos de INST.DE MATEMATICA APLICADA "LITORAL"
Articulos de INST.DE MATEMATICA APLICADA "LITORAL"
Citación
Bongioanni, Bruno; Harboure, Eleonor Ofelia; Quijano, Pablo; Weighted Inequalities for Schrödinger Type Singular Integrals; Birkhauser Boston Inc; Journal Of Fourier Analysis And Applications; 25; 3; 10-6-2019; 595–632
Compartir
Altmétricas