Mostrar el registro sencillo del ítem
dc.contributor.author
Bustos, Germán Andrés
dc.contributor.author
González, Alejandro Hernán
dc.contributor.author
Marchetti, Jacinto Luis
dc.date.available
2016-12-06T13:02:34Z
dc.date.issued
2013-11
dc.identifier.citation
Bustos, Germán Andrés; González, Alejandro Hernán; Marchetti, Jacinto Luis; Detecting stationary gain changes in large process systems; Taylor & Francis; Chemical Engineering Communications; 201; 5; 11-2013; 688-708
dc.identifier.issn
0098-6445
dc.identifier.uri
http://hdl.handle.net/11336/8861
dc.description.abstract
Stationary process gains are critical model parameters to determine targets in commercial MPC technologies. Consequently, important savings can be reached by acceding to an early prevention method capable of detecting whether the actual process moves away from the modeled dynamics or not, particularly by indicating when the process gains are not more represented by those included in the model identified during commissioning stages. In this first approach, a subspace identification method is used under open loop process condition to develop a process gain-matrix estimator. The main reason for using the subspace identification method is that it works directly with raw data and that the development is intended for monitoring future applications under multivariable closed-loop optimizing control where the transient regime is a frequent scenario. The objective of this paper is to present a method capable of detecting those gains of a multivariable model that start moving away from the original values. The anticipated knowledge of these events could provide a warning to process engineers and prevent from targeting process conditions with wrong gain estimations. The regular follow-up of the gain matrix should also help to localize those dynamics needing an updating identification.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Taylor & Francis
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
Steady-State Gains
dc.subject
Subspace Identification
dc.subject
Multivariable Processes
dc.subject
Lp-Mpc
dc.subject.classification
Ingeniería de Procesos Químicos
dc.subject.classification
Ingeniería Química
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS
dc.subject.classification
Sistemas de Automatización y Control
dc.subject.classification
Ingeniería Eléctrica, Ingeniería Electrónica e Ingeniería de la Información
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS
dc.title
Detecting stationary gain changes in large process systems
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2016-12-02T15:59:29Z
dc.journal.volume
201
dc.journal.number
5
dc.journal.pagination
688-708
dc.journal.pais
Reino Unido
dc.journal.ciudad
Londres
dc.description.fil
Fil: Bustos, Germán Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Desarrollo Tecnológico Para la Industria Química (i); Argentina
dc.description.fil
Fil: González, Alejandro Hernán. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Desarrollo Tecnológico Para la Industria Química (i); Argentina
dc.description.fil
Fil: Marchetti, Jacinto Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Desarrollo Tecnológico Para la Industria Química (i); Argentina
dc.journal.title
Chemical Engineering Communications
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://www.tandfonline.com/doi/abs/10.1080/00986445.2013.785945?journalCode=gcec20#preview
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1080/00986445.2013.785945
Archivos asociados