Mostrar el registro sencillo del ítem

dc.contributor.author
Bustos, Germán Andrés  
dc.contributor.author
González, Alejandro Hernán  
dc.contributor.author
Marchetti, Jacinto Luis  
dc.date.available
2016-12-06T13:02:34Z  
dc.date.issued
2013-11  
dc.identifier.citation
Bustos, Germán Andrés; González, Alejandro Hernán; Marchetti, Jacinto Luis; Detecting stationary gain changes in large process systems; Taylor & Francis; Chemical Engineering Communications; 201; 5; 11-2013; 688-708  
dc.identifier.issn
0098-6445  
dc.identifier.uri
http://hdl.handle.net/11336/8861  
dc.description.abstract
Stationary process gains are critical model parameters to determine targets in commercial MPC technologies. Consequently, important savings can be reached by acceding to an early prevention method capable of detecting whether the actual process moves away from the modeled dynamics or not, particularly by indicating when the process gains are not more represented by those included in the model identified during commissioning stages. In this first approach, a subspace identification method is used under open loop process condition to develop a process gain-matrix estimator. The main reason for using the subspace identification method is that it works directly with raw data and that the development is intended for monitoring future applications under multivariable closed-loop optimizing control where the transient regime is a frequent scenario. The objective of this paper is to present a method capable of detecting those gains of a multivariable model that start moving away from the original values. The anticipated knowledge of these events could provide a warning to process engineers and prevent from targeting process conditions with wrong gain estimations. The regular follow-up of the gain matrix should also help to localize those dynamics needing an updating identification.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Taylor & Francis  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Steady-State Gains  
dc.subject
Subspace Identification  
dc.subject
Multivariable Processes  
dc.subject
Lp-Mpc  
dc.subject.classification
Ingeniería de Procesos Químicos  
dc.subject.classification
Ingeniería Química  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.subject.classification
Sistemas de Automatización y Control  
dc.subject.classification
Ingeniería Eléctrica, Ingeniería Electrónica e Ingeniería de la Información  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
Detecting stationary gain changes in large process systems  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2016-12-02T15:59:29Z  
dc.journal.volume
201  
dc.journal.number
5  
dc.journal.pagination
688-708  
dc.journal.pais
Reino Unido  
dc.journal.ciudad
Londres  
dc.description.fil
Fil: Bustos, Germán Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Desarrollo Tecnológico Para la Industria Química (i); Argentina  
dc.description.fil
Fil: González, Alejandro Hernán. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Desarrollo Tecnológico Para la Industria Química (i); Argentina  
dc.description.fil
Fil: Marchetti, Jacinto Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Desarrollo Tecnológico Para la Industria Química (i); Argentina  
dc.journal.title
Chemical Engineering Communications  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://www.tandfonline.com/doi/abs/10.1080/00986445.2013.785945?journalCode=gcec20#preview  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1080/00986445.2013.785945