Mostrar el registro sencillo del ítem
dc.contributor.author
Mihailescu, Mihai
dc.contributor.author
Pérez Pérez, Maria Teresa

dc.date.available
2019-11-12T14:52:10Z
dc.date.issued
2018-07
dc.identifier.citation
Mihailescu, Mihai; Pérez Pérez, Maria Teresa; Inhomogeneous torsional creep problems in anisotropic Orlicz Sobolev spaces; American Institute of Physics; Journal of Mathematical Physics; 59; 7; 7-2018
dc.identifier.issn
0022-2488
dc.identifier.uri
http://hdl.handle.net/11336/88611
dc.description.abstract
In this paper, we study the asymptotic behavior of the sequence of solutions for a family of torsional creep-type problems, involving inhomogeneous and anisotropic differential operators, on a bounded domain, subject to the homogenous Dirichlet boundary condition. We find out that the sequence of solutions converges uniformly on the domain to a certain distance function defined in accordance with the anisotropy of the problem. In addition, we identify the limit problem via viscosity solution theory.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
American Institute of Physics

dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
ANISOTROPIC OPERATOR
dc.subject
ORLICZ SOBOLEV SPACE
dc.subject
GAMMA CONVERGENCE
dc.subject
VISCOSITY SOLUTION
dc.subject.classification
Matemática Aplicada

dc.subject.classification
Matemáticas

dc.subject.classification
CIENCIAS NATURALES Y EXACTAS

dc.title
Inhomogeneous torsional creep problems in anisotropic Orlicz Sobolev spaces
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2019-10-23T15:10:32Z
dc.journal.volume
59
dc.journal.number
7
dc.journal.pais
Estados Unidos

dc.description.fil
Fil: Mihailescu, Mihai. University Of Craiova; Rumania
dc.description.fil
Fil: Pérez Pérez, Maria Teresa. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
dc.journal.title
Journal of Mathematical Physics

dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1063/1.5047918
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://aip.scitation.org/doi/10.1063/1.5047918
Archivos asociados