Artículo
Spaces which Invert Weak Homotopy Equivalences
Fecha de publicación:
05/2019
Editorial:
Cambridge University Press
Revista:
Proceedings Of The Edinburgh Mathematical Society
ISSN:
0013-0915
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
It is well known that if X is a CW-complex, then for every weak homotopy equivalence f : A → B, the map f: [X, A] → [X, B] induced in homotopy classes is a bijection. In fact, up to homotopy equivalence, only CW-complexes have that property. Now, for which spaces X is f: [B, X] → [A, X] a bijection for every weak equivalence f? This question was considered by J. Strom and T. Goodwillie. In this note we prove that a non-empty space inverts weak equivalences if and only if it is contractible.
Palabras clave:
HOMOTOPY TYPES
,
NON-HAUSDORFF SPACES
,
WEAK HOMOTOPY EQUIVALENCES
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IMAS)
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Citación
Barmak, Jonathan Ariel; Spaces which Invert Weak Homotopy Equivalences; Cambridge University Press; Proceedings Of The Edinburgh Mathematical Society; 62; 2; 5-2019; 553-558
Compartir
Altmétricas