Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Species distribution models and empirical test: Comparing predictions with well-understood geographical distribution of Bothrops alternatus in Argentina

Sarquis, Juan AndrésIcon ; Cristaldi, Maximiliano ArielIcon ; Arzamendia, VanesaIcon ; Bellini, Gisela PaolaIcon ; Giraudo, Alejandro RaulIcon
Fecha de publicación: 11/2018
Editorial: John Wiley and Sons Ltd
Revista: Ecology and Evolution
ISSN: 2045-7758
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Zoología, Ornitología, Entomología, Etología

Resumen

Species distribution models (SDMs) estimate the geographical distribution of species although with several limitations due to sources of inaccuracy and biases. Empirical tests arose as the most important steps in scientific knowledge to assess the efficiency of model predictions, which are poorly rigorous in SDMs. A good approach to the empirical distribution (ED) of a species can be obtained from comprehensive empirical knowledge, that is, well-understood distributions gathered from large amount of data generated with appropriate spatial and temporal samples coverage. The aims of this study were to (a) compare different SDMs predictions with an ED; and (b) evaluate if fuzzy global matching (FGM) could be used as an index to compare SDMs predictions and ED. Six algorithms with 5 and 20 variables were used to assess their accuracy in predicting the ED of the venomous snake Bothrops alternatus (Viperidae). Its entire distribution is known, thanks to thorough field surveys across Argentina, with 1,767 records. ED was compared with SDMs predictions using Map Comparison Kit. SDMs predictions showed important biases in all methods used, from 70% sub-estimation to 40% over-estimation of ED. BIOCLIM predicted ≈31% of B. alternatus ED. DOMAIN predicted 99% of ED, but over-estimated 40% of the area. GLM with five variables calculated 75% of ED, while Genetic Algorithm for Rule-set Prediction showed ≈60% of ED; the last two presenting overpredictions in areas with favorable climatic conditions but not inhabited by the species. MaxEnt and RF were the only methods to detect isolated populations in the southern distribution of B. alternatus. Although SDMs proved useful in making predictions about species distribution, predictions need validation with expert maps knowledge and ED. Moreover, FGM showed a good performance as an index with values similar to True Skill Statistic, so that it could be used to relate ED and SDMs predictions.
Palabras clave: EXPERTS MAPS , FUZZY GLOBAL MATCHING , NICHE MODELING , SIMILARITY , SNAKE
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 1.040Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/88509
URL: https://onlinelibrary.wiley.com/doi/full/10.1002/ece3.4517
DOI: http://dx.doi.org/10.1002/ece3.4517
Colecciones
Articulos(INALI)
Articulos de INST.NAC.DE LIMNOLOGIA (I)
Citación
Sarquis, Juan Andrés; Cristaldi, Maximiliano Ariel; Arzamendia, Vanesa; Bellini, Gisela Paola; Giraudo, Alejandro Raul; Species distribution models and empirical test: Comparing predictions with well-understood geographical distribution of Bothrops alternatus in Argentina; John Wiley and Sons Ltd; Ecology and Evolution; 8; 21; 11-2018; 10497-10509
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES