Mostrar el registro sencillo del ítem
dc.contributor.author
Fernandez Culma, Edison Alberto
dc.contributor.author
Godoy, Yamile Alejandra
dc.date.available
2019-11-11T17:14:26Z
dc.date.issued
2018-03-06
dc.identifier.citation
Fernandez Culma, Edison Alberto; Godoy, Yamile Alejandra; Anti-Kählerian geometry on Lie groups; Springer; Mathematical Physics, Analysis And Geometry; 21; 8; 6-3-2018; 1-24
dc.identifier.issn
1385-0172
dc.identifier.uri
http://hdl.handle.net/11336/88473
dc.description.abstract
Let G be a Lie group of even dimension and let (g,J) be a left invariant anti-Kähler structure on G. In this article we study anti-Kähler structures considering the distinguished cases where the complex structure J is abelian or bi-invariant. We find that if G admits a left invariant anti-Kähler structure (g,J) where J is abelian then the Lie algebra of G is unimodular and (G,g) is a flat pseudo-Riemannian manifold. For the second case, we see that for any left invariant metric g for which J is an anti-isometry we obtain that the triple (G,g,J) is an anti-Kähler manifold. Besides, given a left invariant anti-Hermitian structure on G we associate a covariant 3-tensor θ on its Lie algebra and prove that such structure is anti-Kähler if and only if θ is a skew-symmetric and pure tensor. From this tensor we classify the real 4-dimensional Lie algebras for which the corresponding Lie group has a left invariant anti-Kähler structure and study the moduli spaces of such structures (up to group isomorphisms that preserve the anti-Kähler structures)
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Springer
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
ANTI-HERMITIAN GEOMETRY
dc.subject
NORDEN METRICS
dc.subject
ANTI-KÄHLER MANIFOLD
dc.subject
LIE GROUPS
dc.subject.classification
Matemática Pura
dc.subject.classification
Matemáticas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Anti-Kählerian geometry on Lie groups
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2019-10-10T19:02:30Z
dc.identifier.eissn
1572-9656
dc.journal.volume
21
dc.journal.number
8
dc.journal.pagination
1-24
dc.journal.pais
Alemania
dc.journal.ciudad
Berlin
dc.description.fil
Fil: Fernandez Culma, Edison Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina
dc.description.fil
Fil: Godoy, Yamile Alejandra. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina
dc.journal.title
Mathematical Physics, Analysis And Geometry
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs11040-018-9266-4
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/s11040-018-9266-4
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1007/s11040-018-9266-4
Archivos asociados