Artículo
The iterated Aluthge transforms of a matrix converge
Fecha de publicación:
01/2011
Editorial:
Academic Press Inc Elsevier Science
Revista:
Advances in Mathematics
ISSN:
0001-8708
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Given an r×r complex matrix T, if T=U|T| is the polar decomposition of T, then, the Aluthge transform is defined by. Δ(T)=|T|1/2U|T|1/2. Let Δn(T) denote the n-times iterated Aluthge transform of T, i.e., Δ0(T)=T and Δn(T)=Δ(Δn-1(T)), nεN. We prove that the sequence {Δn(T)}nεN converges for every r×r matrix T. This result was conjectured by Jung, Ko and Pearcy in 2003. We also analyze the regularity of the limit function.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IAM)
Articulos de INST.ARG.DE MATEMATICAS "ALBERTO CALDERON"
Articulos de INST.ARG.DE MATEMATICAS "ALBERTO CALDERON"
Citación
Antezana, Jorge Abel; Pujals, Enrique; Stojanoff, Demetrio; The iterated Aluthge transforms of a matrix converge; Academic Press Inc Elsevier Science; Advances in Mathematics; 226; 2; 1-2011; 1591-1620
Compartir
Altmétricas