Artículo
A coupled ligand-receptor bulk-surface system on a moving domain: Well posedness, regularity, and convergence to equilibrium
Fecha de publicación:
15/03/2018
Editorial:
Society for Industrial and Applied Mathematics
Revista:
Siam Journal On Mathematical Analysis
ISSN:
0036-1410
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
We prove existence, uniqueness, and regularit y for a reaction-diffusion system of coupled bulk-surface equations on a moving domain modeling receptor-ligand dynamics in cells. The nonlinear coupling between the three unknowns is through the Robin boundary condition for the bulk quantity and the right-hand sides of the two surface equations. Our results are new even in the nonmoving setting, and in this case we also show exponential convergence to a steady state. The primary complications in the analysis are indeed the nonlinear coupling and the Robin boundary condition. For the well posedness and essential boundedness of solutions we use several De Giorgitype arguments, and we also develop some useful estimates to allow us to apply a Steklov averaging technique for time-dependent operators to prove that solutions are strong. Some of these auxiliary results presented in this paper are of independent interest by themselves.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CIEM)
Articulos de CENT.INV.Y ESTUDIOS DE MATEMATICA DE CORDOBA(P)
Articulos de CENT.INV.Y ESTUDIOS DE MATEMATICA DE CORDOBA(P)
Citación
Alphonse, Amal; Elliott, Charles M.; Afonso Mourao Terra, Joana Isabel; A coupled ligand-receptor bulk-surface system on a moving domain: Well posedness, regularity, and convergence to equilibrium; Society for Industrial and Applied Mathematics; Siam Journal On Mathematical Analysis; 50; 2; 15-3-2018; 1544-1592
Compartir
Altmétricas