Artículo
Confined lithium–sulfur reactions in narrow-diameter carbon nanotubes reveal enhanced electrochemical reactivity
Fu, Chengyin; Oviedo, María Belén
; Zhu, Yihan; von Wald Cresce, Arthur; Xu, Kang; Li, Guanghui; Itkis, Mikhail E.; Haddon, Robert C.; Chi, Miaofang; Han, Yu; Wong, Bryan M.; Guo, Juchen
Fecha de publicación:
10/2018
Editorial:
American Chemical Society
Revista:
ACS Nano
ISSN:
1936-0851
e-ISSN:
1936-086X
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
We demonstrate an unusual electrochemical reaction of sulfur with lithium upon encapsulation in narrow-diameter (subnanometer) single-walled carbon nanotubes (SWNTs). Our study provides mechanistic insight on the synergistic effects of sulfur confinement and Li+ ion solvation properties that culminate in a new mechanism of these sub-nanoscale-enabled reactions (which cannot be solely attributed to the lithiation-delithiation of conventional sulfur). Two types of SWNTs with distinct diameters, produced by electric arc (EA-SWNTs, average diameter 1.55 nm) or high-pressure carbon monoxide (HiPco-SWNTs, average diameter 1.0 nm), are investigated with two comparable electrolyte systems based on tetraethylene glycol dimethyl ether (TEGDME) and 1,4,7,10,13-pentaoxacyclopentadecane (15-crown-5). Electrochemical analyses indicate that a conventional solution-phase Li-S reaction occurs in EA-SWNTs, which can be attributed to the smaller solvated [Li(TEGDME)]+ and [Li(15-crown-5)]+ ions within the EA-SWNT diameter. In stark contrast, the Li-S confined in narrower diameter HiPco-SWNTs exhibits unusual electrochemical behavior that can be attributed to a solid-state reaction enabled by the smaller HiPco-SWNT diameter compared to the size of solvated Li+ ions. Our results of the electrochemical analyses are corroborated and supported with various spectroscopic analyses including operando Raman, X-ray photoelectron spectroscopy, and first-principles calculations from density functional theory. Taken together, our findings demonstrate that the controlled solid-state lithiation-delithiation of sulfur and an enhanced electrochemical reactivity can be achieved by sub-nanoscale encapsulation and one-dimensional confinement in narrow-diameter SWNTs.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(INFIQC)
Articulos de INST.DE INVESTIGACIONES EN FISICO- QUIMICA DE CORDOBA
Articulos de INST.DE INVESTIGACIONES EN FISICO- QUIMICA DE CORDOBA
Citación
Fu, Chengyin; Oviedo, María Belén; Zhu, Yihan; von Wald Cresce, Arthur; Xu, Kang; et al.; Confined lithium–sulfur reactions in narrow-diameter carbon nanotubes reveal enhanced electrochemical reactivity; American Chemical Society; ACS Nano; 12; 10; 10-2018; 9775-9784
Compartir
Altmétricas