Mostrar el registro sencillo del ítem

dc.contributor.author
Díaz Nocera, Aden  
dc.contributor.author
Comin, Romina  
dc.contributor.author
Salvatierra, Nancy Alicia  
dc.contributor.author
Cid, Mariana Paula  
dc.date.available
2019-11-11T13:46:42Z  
dc.date.issued
2018-06  
dc.identifier.citation
Díaz Nocera, Aden; Comin, Romina; Salvatierra, Nancy Alicia; Cid, Mariana Paula; Development of 3D printed fibrillar collagen scaffold for tissue engineering; Springer; Biomedical Microdevices; 20; 2; 6-2018  
dc.identifier.issn
1387-2176  
dc.identifier.uri
http://hdl.handle.net/11336/88422  
dc.description.abstract
Collagen is widely used in tissue engineering because it can be extracted in large quantities, and has excellent biocompatibility, good biodegradability, and weak antigenicity. In the present study, we isolated printable collagen from bovine Achilles tendon and examined the purity of the isolated collagen using sodium dodecyl sulfate polyacrylamide gel electrophoresis. The bands obtained corresponded to α 1 , α 2 and β chains with little contamination from other small proteins. Furthermore, rheological measurements of collagen dispersions (60 mg per ml of PBS) at pH 7 revealed values of viscosity of 35.62 ± 1.42 Pa s at shear rate of 10 s − 1 and a shear thinning behavior. Collagen gels and solutions can be used for building scaffolds by three-dimensional (3D) printing. After designing and fabricating a low-cost 3D printer we assayed the collagen printing and obtaining 3D printed scaffolds of collagen at pH 7. The porosity of the scaffold was 90.22% ± 0.88% and the swelling ratio was 1437% ± 146%. The microstructure of the scaffolds was studied using scanning electron microscopy, and a porous mesh of fibrillar collagen was observed. In addition, the 3D printed collagen scaffold was not cytotoxic with cell viability higher than 70% using Vero and NIH 3 T3 cells. In vitro evaluation using both cells lines demonstrated that the collagen scaffolds had the ability to support cell attachment and proliferation. Also a fibrillar collagen mesh was observed after two weeks of culture at 37 °C. Overall, these results are promising since they show the capability of the presented protocol to obtain printable fibrillar collagen at pH 7 and the potential of the printing technique for building low-cost biocompatible 3D plotted structures which maintained the fibrillar collagen structure after incubation in culture media without using additional strategies as crosslinking.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Springer  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
COLLAGEN ISOLATION  
dc.subject
CYTOCOMPABILITY  
dc.subject
FIBRILLAR COLLAGEN  
dc.subject
THREE-DIMENSIONAL PRINTED SCAFFOLD  
dc.subject
THREE-DIMENSIONAL PRINTER  
dc.subject
TISSUE ENGINEERING  
dc.subject.classification
Ingeniería Médica  
dc.subject.classification
Ingeniería Médica  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
Development of 3D printed fibrillar collagen scaffold for tissue engineering  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2019-10-22T17:35:20Z  
dc.identifier.eissn
1572-8781  
dc.journal.volume
20  
dc.journal.number
2  
dc.journal.pais
Alemania  
dc.description.fil
Fil: Díaz Nocera, Aden. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales. Departamento de Química; Argentina  
dc.description.fil
Fil: Comin, Romina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones Biológicas y Tecnológicas. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales. Instituto de Investigaciones Biológicas y Tecnológicas; Argentina. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales. Departamento de Química; Argentina  
dc.description.fil
Fil: Salvatierra, Nancy Alicia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones Biológicas y Tecnológicas. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales. Instituto de Investigaciones Biológicas y Tecnológicas; Argentina. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales. Departamento de Química; Argentina  
dc.description.fil
Fil: Cid, Mariana Paula. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones Biológicas y Tecnológicas. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales. Instituto de Investigaciones Biológicas y Tecnológicas; Argentina. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales. Departamento de Química; Argentina  
dc.journal.title
Biomedical Microdevices  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs10544-018-0270-z  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/s10544-018-0270-z