Mostrar el registro sencillo del ítem
dc.contributor.author
Díaz Nocera, Aden
dc.contributor.author
Comin, Romina
dc.contributor.author
Salvatierra, Nancy Alicia
dc.contributor.author
Cid, Mariana Paula
dc.date.available
2019-11-11T13:46:42Z
dc.date.issued
2018-06
dc.identifier.citation
Díaz Nocera, Aden; Comin, Romina; Salvatierra, Nancy Alicia; Cid, Mariana Paula; Development of 3D printed fibrillar collagen scaffold for tissue engineering; Springer; Biomedical Microdevices; 20; 2; 6-2018
dc.identifier.issn
1387-2176
dc.identifier.uri
http://hdl.handle.net/11336/88422
dc.description.abstract
Collagen is widely used in tissue engineering because it can be extracted in large quantities, and has excellent biocompatibility, good biodegradability, and weak antigenicity. In the present study, we isolated printable collagen from bovine Achilles tendon and examined the purity of the isolated collagen using sodium dodecyl sulfate polyacrylamide gel electrophoresis. The bands obtained corresponded to α 1 , α 2 and β chains with little contamination from other small proteins. Furthermore, rheological measurements of collagen dispersions (60 mg per ml of PBS) at pH 7 revealed values of viscosity of 35.62 ± 1.42 Pa s at shear rate of 10 s − 1 and a shear thinning behavior. Collagen gels and solutions can be used for building scaffolds by three-dimensional (3D) printing. After designing and fabricating a low-cost 3D printer we assayed the collagen printing and obtaining 3D printed scaffolds of collagen at pH 7. The porosity of the scaffold was 90.22% ± 0.88% and the swelling ratio was 1437% ± 146%. The microstructure of the scaffolds was studied using scanning electron microscopy, and a porous mesh of fibrillar collagen was observed. In addition, the 3D printed collagen scaffold was not cytotoxic with cell viability higher than 70% using Vero and NIH 3 T3 cells. In vitro evaluation using both cells lines demonstrated that the collagen scaffolds had the ability to support cell attachment and proliferation. Also a fibrillar collagen mesh was observed after two weeks of culture at 37 °C. Overall, these results are promising since they show the capability of the presented protocol to obtain printable fibrillar collagen at pH 7 and the potential of the printing technique for building low-cost biocompatible 3D plotted structures which maintained the fibrillar collagen structure after incubation in culture media without using additional strategies as crosslinking.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Springer
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
COLLAGEN ISOLATION
dc.subject
CYTOCOMPABILITY
dc.subject
FIBRILLAR COLLAGEN
dc.subject
THREE-DIMENSIONAL PRINTED SCAFFOLD
dc.subject
THREE-DIMENSIONAL PRINTER
dc.subject
TISSUE ENGINEERING
dc.subject.classification
Ingeniería Médica
dc.subject.classification
Ingeniería Médica
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS
dc.title
Development of 3D printed fibrillar collagen scaffold for tissue engineering
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2019-10-22T17:35:20Z
dc.identifier.eissn
1572-8781
dc.journal.volume
20
dc.journal.number
2
dc.journal.pais
Alemania
dc.description.fil
Fil: Díaz Nocera, Aden. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales. Departamento de Química; Argentina
dc.description.fil
Fil: Comin, Romina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones Biológicas y Tecnológicas. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales. Instituto de Investigaciones Biológicas y Tecnológicas; Argentina. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales. Departamento de Química; Argentina
dc.description.fil
Fil: Salvatierra, Nancy Alicia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones Biológicas y Tecnológicas. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales. Instituto de Investigaciones Biológicas y Tecnológicas; Argentina. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales. Departamento de Química; Argentina
dc.description.fil
Fil: Cid, Mariana Paula. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones Biológicas y Tecnológicas. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales. Instituto de Investigaciones Biológicas y Tecnológicas; Argentina. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales. Departamento de Química; Argentina
dc.journal.title
Biomedical Microdevices
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs10544-018-0270-z
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/s10544-018-0270-z
Archivos asociados