Artículo
Error Covariance Penalized Regression: A novel multivariate model combining penalized regression with multivariate error structure
Fecha de publicación:
06/2018
Editorial:
Elsevier Science
Revista:
Analytica Chimica Acta
ISSN:
0003-2670
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
A new multivariate regression model, named Error Covariance Penalized Regression (ECPR) is presented. Following a penalized regression strategy, the proposed model incorporates information about the measurement error structure of the system, using the error covariance matrix (ECM) as a penalization term. Results are reported from both simulations and experimental data based on replicate mid and near infrared (MIR and NIR) spectral measurements. The results for ECPR are better under non-iid conditions when compared with traditional first-order multivariate methods such as ridge regression (RR), principal component regression (PCR) and partial least-squares regression (PLS).
Palabras clave:
ERROR COVARIANCE MATRIX
,
MULTIVARIATE CALIBRATION
,
PENALIZED REGRESSION
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IQUIR)
Articulos de INST.DE QUIMICA ROSARIO
Articulos de INST.DE QUIMICA ROSARIO
Citación
Allegrini, Franco; Braga, Jez W. B.; Moreira, Alessandro C. O.; Olivieri, Alejandro Cesar; Error Covariance Penalized Regression: A novel multivariate model combining penalized regression with multivariate error structure; Elsevier Science; Analytica Chimica Acta; 1011; 6-2018; 20-27
Compartir
Altmétricas