Mostrar el registro sencillo del ítem

dc.contributor.author
de Paula, Mariano  
dc.contributor.author
Martinez, Ernesto Carlos  
dc.date.available
2015-06-22T17:32:42Z  
dc.date.issued
2013-07  
dc.identifier.citation
de Paula, Mariano; Martinez, Ernesto Carlos; Reinforcement Learning using Gaussian Processes for Discretely Controlled Continuous Processes; Planta Piloto de Ingeniería Química; Latin American Applied Research; 43; 7-2013; 249-254  
dc.identifier.issn
0327-0793  
dc.identifier.uri
http://hdl.handle.net/11336/881  
dc.description.abstract
In many application domains such as autonomous avionics, power electronics and process systems engineering there exist discretely controlled continuous processes (DCCPs) which constitute a special subclass of hybrid dynamical systems. We introduce a novel simulation-based approach for DDCPs optimization under uncertainty using Rein-forcement Learning with Gaussian Process models to learn the transitions dynamics descriptive of mode execution and an optimal switching policy for mode selection. Each mode implements a parameterized feedback control law until a stopping condition trig-gers. To deal with the size/dimension of the state space and a continuum of control mode parameters, Bayesian active learning is proposed using a utility function that trades off information content with policy improvement. Throughput maximization in a buffer tank subject to an uncertain schedule of sev-eral inflow discharges is used as case study address-ing supply chain control in manufacturing systems  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Planta Piloto de Ingeniería Química  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Hybrid Systems  
dc.subject
Stochastic Systems  
dc.subject
Optimization  
dc.subject
Reinforcement Learning  
dc.subject
Gaussian Processes  
dc.subject.classification
Sistemas de Automatización y Control  
dc.subject.classification
Ingeniería Eléctrica, Ingeniería Electrónica e Ingeniería de la Información  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
Reinforcement Learning using Gaussian Processes for Discretely Controlled Continuous Processes  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2016-03-30 10:35:44.97925-03  
dc.identifier.eissn
1851-8796  
dc.journal.volume
43  
dc.journal.pagination
249-254  
dc.journal.pais
Argentina  
dc.journal.ciudad
Bahia Blanca  
dc.description.fil
Fil: de Paula, Mariano. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológio - CONICET - Santa Fe. Instituto de Desarrollo y Diseño (i); Argentina  
dc.description.fil
Fil: Martinez, Ernesto Carlos. Consejo Nacional de Invest.cientif.y Tecnicas. Centro Cientifico Tecnol.conicet - Santa Fe. Instituto de Desarrollo y Dise?o (i);  
dc.journal.title
Latin American Applied Research  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://www.laar.uns.edu.ar/indexes/artic_v4303/Vol43_03_249.pdf