Artículo
Interfacial depinning transitions in disordered media: Revisiting an old puzzle
Fecha de publicación:
15/10/2014
Editorial:
IOP Publishing
Revista:
Journal of Statistical Mechanics: Theory and Experiment
ISSN:
1742-5468
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Interfaces advancing through random media represent a number of different problems in physics, biology and other disciplines. Here, we study the pinning/depinning transition of the prototypical non-equilibrium interfacial model, i.e. the Kardar–Parisi–Zhang equation, advancing in a disordered medium. We will separately analyze the cases of positive and negative non-linearity coefficients, which are believed to exhibit qualitatively different behavior: the positive case shows a continuous transition that can be related to directed-percolation-depinning, while in the negative case there is a discontinuous transition and faceted interfaces appear. Some studies have argued from different perspectives that both cases share the same universal behavior. By using a number of computational and scaling techniques we will shed light on this puzzling situation and conclude that the two cases are intrinsically different.
Palabras clave:
INTERFACES IN RANDOM MEDIA (THEORY)
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IFLYSIB)
Articulos de INST.FISICA DE LIQUIDOS Y SIST.BIOLOGICOS (I)
Articulos de INST.FISICA DE LIQUIDOS Y SIST.BIOLOGICOS (I)
Citación
Moglia, Belén; Albano, Ezequiel Vicente; Villegas, Pablo; Muñoz, Miguel A; Interfacial depinning transitions in disordered media: Revisiting an old puzzle; IOP Publishing; Journal of Statistical Mechanics: Theory and Experiment; 2014; 10; 15-10-2014; 10024-10038
Compartir
Altmétricas