Mostrar el registro sencillo del ítem

dc.contributor.author
Caggiano, Antonio  
dc.contributor.author
Said Schicchi, Diego  
dc.contributor.author
Mankel, Christoph  
dc.contributor.author
Ukrainczyk, Neven  
dc.contributor.author
Koenders, Eduardus A. B.  
dc.date.available
2019-11-05T21:20:08Z  
dc.date.issued
2018-04  
dc.identifier.citation
Caggiano, Antonio; Said Schicchi, Diego; Mankel, Christoph; Ukrainczyk, Neven; Koenders, Eduardus A. B.; A mesoscale approach for modeling capillary water absorption and transport phenomena in cementitious materials; Pergamon-Elsevier Science Ltd; Computers & Structures; 200; 4-2018; 1-10  
dc.identifier.issn
0045-7949  
dc.identifier.uri
http://hdl.handle.net/11336/88101  
dc.description.abstract
This paper proposes a mesoscale approach for simulating moisture transport by capillary action in partly-saturated porous cementitious composites. The modeling approach explicitly accounts for moisture transport through a mesostructure composed of coarse aggregates, surrounding cementitious mortar and interfaces. These latter, namely interface transition zones (ITZs), allow to describe the interaction between aggregates and mortar, and may cause an alternative path for the internal moisture movements. Basic morphology effects of the ITZs are simulated using a ribbon approach. Random spatial distribution of cement particles are stacked in the meso-geometry. Aggregate particles are introduced as randomly perturbed polygons and the moisture transport is modeled as a diffusion problem and solved by means of the finite element method. The proposed constitutive models are based on a proper description of the permeability and pore size distribution which strongly affect the local moisture content. Numerical results at both macro- and mesoscale levels demonstrate the soundness and capability of the proposed approach. The integrated modeling results actually demonstrate the potential of the mesoscale approach and shows the role of the ITZs as an internal interconnected network.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Pergamon-Elsevier Science Ltd  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Capillary water absorption  
dc.subject
Moisture transport  
dc.subject
Partly-saturated porous concrete  
dc.subject
Mesoscale  
dc.subject
Diffusion problems  
dc.subject.classification
Ingeniería Civil  
dc.subject.classification
Ingeniería Civil  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
A mesoscale approach for modeling capillary water absorption and transport phenomena in cementitious materials  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2019-10-22T15:04:51Z  
dc.journal.volume
200  
dc.journal.pagination
1-10  
dc.journal.pais
Países Bajos  
dc.journal.ciudad
Amsterdam  
dc.description.fil
Fil: Caggiano, Antonio. Universitat Technische Darmstadt; Alemania. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Tecnologías y Ciencias de la Ingeniería "Hilario Fernández Long". Universidad de Buenos Aires. Facultad de Ingeniería. Instituto de Tecnologías y Ciencias de la Ingeniería "Hilario Fernández Long"; Argentina  
dc.description.fil
Fil: Said Schicchi, Diego. Leibniz-Institut Für Werkstofforientierte Technologien; Alemania. Instituto Nacional de Tecnología Industrial; Argentina  
dc.description.fil
Fil: Mankel, Christoph. Universitat Technische Darmstadt; Alemania  
dc.description.fil
Fil: Ukrainczyk, Neven. Universitat Technische Darmstadt; Alemania  
dc.description.fil
Fil: Koenders, Eduardus A. B.. Universitat Technische Darmstadt; Alemania  
dc.journal.title
Computers & Structures  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0045794917306922  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.compstruc.2018.01.013