Mostrar el registro sencillo del ítem
dc.contributor.author
Avila, Luis Omar
dc.contributor.author
de Paula, Mariano
dc.contributor.author
Sánchez Reinoso, Carlos Roberto
dc.date.available
2019-11-04T20:13:41Z
dc.date.issued
2018-09
dc.identifier.citation
Avila, Luis Omar; de Paula, Mariano; Sánchez Reinoso, Carlos Roberto; Estimation of plasma insulin concentration under glycemic variability using nonlinear filtering techniques; Elsevier; Biosystems; 171; 9-2018; 1-9
dc.identifier.issn
0303-2647
dc.identifier.uri
http://hdl.handle.net/11336/87958
dc.description.abstract
The ultimate goal of an artificial pancreas is finding the optimal insulin rates that can effectively reduce high blood glucose (BG) levels in type 1 diabetic patients. To achieve this, most closed-loop control strategies need to compute the optimal insulin action on the basis of precedent glucose and insulin levels. Unlike glucose levels which can be measured in real-time, unavailability of insulin sensors makes it essential the use of mathematical models to estimate plasma insulin concentrations. Between others, filtering techniques based on a generalization of the Kalman filter (KF) have been the most widely applied in the estimation of hidden states in nonlinear dynamic systems. Nevertheless, poor predictability of BG levels is a key issue since the glucose-insulin dynamics presents great inter- and intra-patient variability. Here, the question arises as to whether glycemic variability is not properly taken into account in models formulations and whether or it would compromise proper estimation of plasma insulin concentration. In order to tackle this point, a deterministic model describing glucose-insulin interaction plus a stochastic process to account for BG fluctuations were incorporated into the extended (EKF), cubature (CKF) and unscented (UKF) configurations of the Kalman filter to provide an estimate of the plasma insulin concentration. We found that for low glycemic variability, insulin state estimation can be attained with acceptable accuracy; however, as glycemic variability rises, Kalman filters rapidly degrade their performance as a consequence of large nonlinearities.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Elsevier
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.subject
ARTIFICIAL PANCREAS
dc.subject
GLYCEMIC VARIABILITY
dc.subject
INSULIN ESTIMATION
dc.subject
KALMAN FILTER
dc.subject
STOCHASTIC MODEL
dc.subject.classification
Sistemas de Automatización y Control
dc.subject.classification
Ingeniería Eléctrica, Ingeniería Electrónica e Ingeniería de la Información
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS
dc.title
Estimation of plasma insulin concentration under glycemic variability using nonlinear filtering techniques
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2019-10-16T15:05:22Z
dc.journal.volume
171
dc.journal.pagination
1-9
dc.journal.pais
Países Bajos
dc.journal.ciudad
Amsterdam
dc.description.fil
Fil: Avila, Luis Omar. Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Departamento de Informática. Laboratorio Investigación y Desarrollo en Inteligencia Computacional; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
dc.description.fil
Fil: de Paula, Mariano. Universidad Nacional del Centro de la Provincia de Buenos Aires. Centro de Investigaciones en Física e Ingeniería del Centro de la Provincia de Buenos Aires. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Centro de Investigaciones en Física e Ingeniería del Centro de la Provincia de Buenos Aires. - Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Centro de Investigaciones en Física e Ingeniería del Centro de la Provincia de Buenos Aires; Argentina
dc.description.fil
Fil: Sánchez Reinoso, Carlos Roberto. Universidad Nacional de Catamarca. Facultad Tecnología y Ciencias Aplicadas. Centro de Investigación y Desarrollo en Modelado, Simulación y Optimización de Sistemas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
dc.journal.title
Biosystems
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0303264717302368
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.biosystems.2018.06.003
Archivos asociados