Artículo
Boundary conditions and the residual entropy of ice systems
Fecha de publicación:
10/2018
Editorial:
American Physical Society
Revista:
Physical Review E: Statistical, Nonlinear and Soft Matter Physics
ISSN:
2470-0045
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
In this work we address the classical statistical mechanical problem of calculating the residual entropy of ice models. The numerical work found in the literature is usually based on extrapolating to infinite-size results obtained for finite-size systems with periodic boundary conditions. In this work we investigate how boundary conditions affect the calculation of the residual entropy for square, cubic, and hexagonal lattices using periodic, antiperiodic, and open boundary conditions. We show that periodic boundary conditions lead to noticeable oscillations in the entropy as a function of lattice size, and we calculate in open finite systems the contribution to the entropy from the open boundary. For our calculations we introduce a variation on multicanonical simulation methods that directly calculate the number of states in the ground state without the need of a Hamiltonian.
Palabras clave:
FRUSTRATED SYSTEMS
,
ICE MODELS
,
RESIDUAL ENTROPY
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IFLYSIB)
Articulos de INST.FISICA DE LIQUIDOS Y SIST.BIOLOGICOS (I)
Articulos de INST.FISICA DE LIQUIDOS Y SIST.BIOLOGICOS (I)
Citación
Ferreyra, María Victoria; Grigera, Santiago Andrés; Boundary conditions and the residual entropy of ice systems; American Physical Society; Physical Review E: Statistical, Nonlinear and Soft Matter Physics; 98; 4; 10-2018
Compartir
Altmétricas