Mostrar el registro sencillo del ítem

dc.contributor.author
Gallo, Leandro César  
dc.contributor.author
Cristallini, Ernesto Osvaldo  
dc.contributor.author
Svarc, Marcela  
dc.date.available
2019-10-30T17:53:16Z  
dc.date.issued
2018-11  
dc.identifier.citation
Gallo, Leandro César; Cristallini, Ernesto Osvaldo; Svarc, Marcela; A Nonparametric Approach for Assessing Precision in Georeferenced Point Clouds Best Fit Planes: Toward More Reliable Thresholds; American Geophysical Union; Journal of Geophysical Research: Solid Earth; 123; 11; 11-2018; 10,297-10,308  
dc.identifier.issn
2169-9313  
dc.identifier.uri
http://hdl.handle.net/11336/87672  
dc.description.abstract
The fitting of a plane to data points is essential to the geosciences. However, it is recognized that the reliability of these best fit planes depends upon the point set distribution and geometry, evaluated in terms of the eigen-based parameters derived from the moment of inertia analysis. Despite its significance, few studies have addressed the uncertainties of the analysis, which can adversely affect the reproduction of results one of the cornerstones of scientific endeavor. Aiming to contribute toward the neglected issue of the moment of inertia precision, we have developed a bootstrap resampling scheme to empirically discover the distribution of uncertainties in the orientation of best fit planes. Dispersion of the bootstrapped normal vectors to the best fit plane is regarded as a measure of precision, evaluated with the maximum angular distance from the optimal solution. This rationale was tested using Monte Carlo-generated samples covering a comprehensive range of shape parameters to assess the dependence between eigen parameters and their inherent bias. Our results show that the oblateness of the point cloud is a robust parameter to assess the reliability of the best fit plane. Given this, the method was then applied to a publicly available lidar data set. We argue that georeferenced point clouds with an oblateness parameter greater than 3 and 1.5 may be placed at 95% confidence levels of 5° and 10°, respectively. We propose using these values as thresholds to obtain robust best fit planes, guaranteeing reproducible results for scientific research.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
American Geophysical Union  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
BEST FIT PLANE  
dc.subject
BOOTSTRAP STATISTICS  
dc.subject
MOMENT OF INERTIA ANALYSIS  
dc.subject
MONTE CARLO SIMULATION  
dc.subject
ORIENTATION OF STRUCTURAL HETEROGENEITIES  
dc.subject.classification
Geología  
dc.subject.classification
Ciencias de la Tierra y relacionadas con el Medio Ambiente  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
A Nonparametric Approach for Assessing Precision in Georeferenced Point Clouds Best Fit Planes: Toward More Reliable Thresholds  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2019-10-15T15:18:07Z  
dc.identifier.eissn
2169-9356  
dc.journal.volume
123  
dc.journal.number
11  
dc.journal.pagination
10,297-10,308  
dc.journal.pais
Estados Unidos  
dc.description.fil
Fil: Gallo, Leandro César. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Geociencias Básicas, Aplicadas y Ambientales de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Geociencias Básicas, Aplicadas y Ambientales de Buenos Aires; Argentina  
dc.description.fil
Fil: Cristallini, Ernesto Osvaldo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Estudios Andinos "Don Pablo Groeber". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Estudios Andinos "Don Pablo Groeber"; Argentina  
dc.description.fil
Fil: Svarc, Marcela. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de San Andrés; Argentina  
dc.journal.title
Journal of Geophysical Research: Solid Earth  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2018JB016319  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1029/2018JB016319