Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Collaborative Learning Team Formation Considering Team Roles: An Evolutionary Approach based on Adaptive Crossover, Mutation and Simulated Annealing

Yannibelli, Virginia DanielaIcon ; Amandi, Analia AdrianaIcon
Fecha de publicación: 04/2018
Editorial: National Polytechnic Institute
Revista: Research in Computing Science
ISSN: 1870-4069
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Ciencias de la Computación

Resumen

In this paper, a hybrid evolutionary algorithm is proposed to solve a collaborative learning team formation problem in higher education contexts. This problem involves a grouping criterion evaluated satisfactorily in a great variety of higher education courses as well as training programs. This criterion is based on the team roles of students, and implies forming well-balanced teams respecting the team roles of their members. The hybrid evolutionary algorithm uses adaptive crossover, mutation and simulated annealing processes, in order to improve the performance of the evolutionary search. These processes adapt their behavior regarding the state of the evolutionary search. The performance of the hybrid evolutionary algorithm is exhaustively evaluated on data sets with very different complexity levels, and after that, is compared with those of the algorithms previously reported in the literature to solve the addressed problem. The results obtained from the performance comparison indicate that the hybrid evolutionary algorithm significantly outperforms the algorithms previously reported, in both effectiveness and efficiency.
Palabras clave: Collaborative Learning , Collaborative Learning Team Formation , Team Roles , Evolutionary Algorithms , Hybrid Evolutionary Algorithms , Adaptive Evolutionary Algorithms , Simulated Annealing Algorithms
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 319.2Kb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/87560
URL: https://www.semanticscholar.org/paper/Collaborative-Learning-Team-Formation-Cons
URL: https://www.rcs.cic.ipn.mx/2018_147_4/
URL: https://www.rcs.cic.ipn.mx/2018_147_4/Collaborative%20Learning%20Team%20Formatio
Colecciones
Articulos(ISISTAN)
Articulos de INSTITUTO SUPERIOR DE INGENIERIA DEL SOFTWARE
Citación
Yannibelli, Virginia Daniela; Amandi, Analia Adriana; Collaborative Learning Team Formation Considering Team Roles: An Evolutionary Approach based on Adaptive Crossover, Mutation and Simulated Annealing; National Polytechnic Institute; Research in Computing Science; 147; 4; 4-2018; 61-74
Compartir

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES