Artículo
Testing for serial correlation in hierarchical linear models
Fecha de publicación:
05/2018
Editorial:
Elsevier
Revista:
Journal Of Multivariate Analysis
ISSN:
0047-259X
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
This paper proposes a simple hierarchical model and a testing strategy to identify intra-cluster correlations, in the form of nested random effects and serially correlated error components. We focus on intra-cluster serial correlation at different nested levels, a topic that has not been studied in the literature before. A Neyman's C(α) framework is used to derive LM-type tests that allow researchers to identify the appropriate level of clustering as well as the type of intra-group correlation. An extensive Monte Carlo exercise shows that the proposed tests perform well in finite samples and under non-Gaussian distributions.
Palabras clave:
CLUSTERS
,
RANDOM EFFECTS
,
SERIAL CORRELATION
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IIEP)
Articulos de INST. INTER. DE ECONOMIA POLITICA DE BUENOS AIRES
Articulos de INST. INTER. DE ECONOMIA POLITICA DE BUENOS AIRES
Citación
Alejo, Osvaldo Javier; Montes Rojas, Gabriel Victorio; Sosa Escudero, Walter; Testing for serial correlation in hierarchical linear models; Elsevier; Journal Of Multivariate Analysis; 165; 5-2018; 101-116
Compartir
Altmétricas