Mostrar el registro sencillo del ítem

dc.contributor.author
Antonio, Marina  
dc.contributor.author
Maggio, Ruben Mariano  
dc.date.available
2019-10-23T20:39:28Z  
dc.date.issued
2018-02  
dc.identifier.citation
Antonio, Marina; Maggio, Ruben Mariano; Assessment of mefenamic acid polymorphs in commercial tablets using chemometric coupled to MIR and NIR spectroscopies. Prediction of dissolution performance; Elsevier Science; Journal of Pharmaceutical and Biomedical Analysis; 149; 2-2018; 603-611  
dc.identifier.issn
0731-7085  
dc.identifier.uri
http://hdl.handle.net/11336/87171  
dc.description.abstract
Mefenamic Acid (MFA) is a widely-used non-steroidal anti-inflammatory drug. MFA presents four possible crystal forms; Form I and Form II being the only two pure crystals that have been isolated and fully characterized. Both Form I and Form II were prepared following the literature and completely characterized by middle (MIR) and near (NIR) infrared spectroscopy, digital optical microscopy, differential scanning calorimetry, melting point and dissolution properties. In order to develop quantitative models to assess Form I in formulated products, two sets of samples, training (n = 10) and validation (n = 8) sets, were prepared by mixing both polymorphs and the matrix of excipient (simulating commercial tablets). The particle size of the samples was homogenized by sieving and samples were mechanically mixed. A batch of commercial tablets was gently disaggregated, sieved and mechanically mixed for further analysis. For each sample, full MIR and NIR spectra were acquired and used as input of partial least squares (PLS) algorithm separately. Method optimization and internal validation were performed by leave one out procedure. Full spectra and 5 PLS-factors were used for MIR; while, 5 PLS-factors and mean center spectra of full spectra were the optimal conditions for NIR. Accuracy and precision were assessed by evaluation of the actual vs. predicted curve of validation set; and by calculating validation set recoveries and deviations (104.3 ± 8.2% and 100.4 ± 1.0% for MIR and NIR respectively). Only NIR-PLS yielded acceptable results and low deviations during commercial samples evaluation (102.8 ± 0.1%). The same behavior was observed when spiked tablets were analyzed (103.5 ± 0.5%). Additionally, for the calibration set ten dissolution profiles (average of 6 curves each), were obtained under optimized test conditions (900 ml of buffer phosphate pH 9 with surfactant, apparatus II USP, 100 rpm, detection at 342 nm). A multiple linear regression (MLR) was carried out using dissolution profiles and Form I content. The developed MLR model could correlate dissolution profiles and polymorphic richness. This approach, coupled to previously developed NIR-PLS, may act as a valid tool to estimate dissolution profiles from solid forms.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier Science  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/  
dc.subject
Polymorphism  
dc.subject
Mefenamic Acid  
dc.subject
MIR NIR  
dc.subject
Chemometrics  
dc.subject.classification
Química Analítica  
dc.subject.classification
Ciencias Químicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Assessment of mefenamic acid polymorphs in commercial tablets using chemometric coupled to MIR and NIR spectroscopies. Prediction of dissolution performance  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2019-10-16T19:17:01Z  
dc.journal.volume
149  
dc.journal.pagination
603-611  
dc.journal.pais
Países Bajos  
dc.journal.ciudad
Amsterdam  
dc.description.fil
Fil: Antonio, Marina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Química Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Química Rosario; Argentina  
dc.description.fil
Fil: Maggio, Ruben Mariano. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Química Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Química Rosario; Argentina  
dc.journal.title
Journal of Pharmaceutical and Biomedical Analysis  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.jpba.2017.11.053  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0731708517320447