Artículo
Predicting novel microRNA: a comprehensive comparison of machine learning approaches
Stegmayer, Georgina
; Di Persia, Leandro Ezequiel
; Rubiolo, Mariano
; Gerard, Matias Fernando
; Pividori, Milton Damián
; Yones, Cristian Ariel
; Bugnon, Leandro Ariel
; Rodríguez, Tadeo; Raad, Jonathan
; Milone, Diego Humberto
Fecha de publicación:
2018
Editorial:
Oxford University Press
Revista:
Briefings In Bioinformatics
ISSN:
1467-5463
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
This review provides a comprehensive study and comparative assessment of methods from these two machine learning (ML) approaches for dealing with the prediction of novel pre-miRNAs: supervised and unsupervised training.We present and analyze the machine learning proposals that have appeared during the last 10 years in literature. They have been compared in several prediction tasks involving two model genomes and increasing imbalance levels. This work provides a review of existing ML approaches for premiRNAprediction and fair comparisons of the classifiers with same features and data sets, instead of just a revision of published software tools. The results and the discussion can help the community to select the most adequate bioinformatics approach according to the prediction task at hand. The comparative results obtained suggest that from low to mid imbalance levels between classes, supervised methods can be the best. However, at very high imbalance levels, closer to real case scenarios, models including unsupervised and deep learning can provide better performance.
Palabras clave:
MIRNA PREDICTION
,
HIGH CLASS IMBALANCE
,
MACHINE LEARNING
,
BIOINFORMATICS
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(SINC(I))
Articulos de INST. DE INVESTIGACION EN SEÑALES, SISTEMAS E INTELIGENCIA COMPUTACIONAL
Articulos de INST. DE INVESTIGACION EN SEÑALES, SISTEMAS E INTELIGENCIA COMPUTACIONAL
Citación
Stegmayer, Georgina; Di Persia, Leandro Ezequiel; Rubiolo, Mariano; Gerard, Matias Fernando; Pividori, Milton Damián; et al.; Predicting novel microRNA: a comprehensive comparison of machine learning approaches; Oxford University Press; Briefings In Bioinformatics; 2018; 2018; 1-14
Compartir
Altmétricas