Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Predicting novel microRNA: a comprehensive comparison of machine learning approaches

Stegmayer, GeorginaIcon ; Di Persia, Leandro EzequielIcon ; Rubiolo, MarianoIcon ; Gerard, Matias FernandoIcon ; Pividori, Milton DamiánIcon ; Yones, Cristian ArielIcon ; Bugnon, Leandro ArielIcon ; Rodríguez, Tadeo; Raad, JonathanIcon ; Milone, Diego HumbertoIcon
Fecha de publicación: 2018
Editorial: Oxford University Press
Revista: Briefings In Bioinformatics
ISSN: 1467-5463
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Ciencias de la Información y Bioinformática

Resumen

This review provides a comprehensive study and comparative assessment of methods from these two machine learning (ML) approaches for dealing with the prediction of novel pre-miRNAs: supervised and unsupervised training.We present and analyze the machine learning proposals that have appeared during the last 10 years in literature. They have been compared in several prediction tasks involving two model genomes and increasing imbalance levels. This work provides a review of existing ML approaches for premiRNAprediction and fair comparisons of the classifiers with same features and data sets, instead of just a revision of published software tools. The results and the discussion can help the community to select the most adequate bioinformatics approach according to the prediction task at hand. The comparative results obtained suggest that from low to mid imbalance levels between classes, supervised methods can be the best. However, at very high imbalance levels, closer to real case scenarios, models including unsupervised and deep learning can provide better performance.
Palabras clave: MIRNA PREDICTION , HIGH CLASS IMBALANCE , MACHINE LEARNING , BIOINFORMATICS
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 405.8Kb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/87157
URL: http://fdslive.oup.com/www.oup.com/pdf/production_in_progress.pdf
DOI: http://dx.doi.org/10.1093/bib/bby037
Colecciones
Articulos(SINC(I))
Articulos de INST. DE INVESTIGACION EN SEÑALES, SISTEMAS E INTELIGENCIA COMPUTACIONAL
Citación
Stegmayer, Georgina; Di Persia, Leandro Ezequiel; Rubiolo, Mariano; Gerard, Matias Fernando; Pividori, Milton Damián; et al.; Predicting novel microRNA: a comprehensive comparison of machine learning approaches; Oxford University Press; Briefings In Bioinformatics; 2018; 2018; 1-14
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES