Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

A regularity-based algorithm for identifying grazing and rumination bouts from acoustic signals in grazing cattle

Vanrell, Sebastián RodrigoIcon ; Chelotti, Jose OmarIcon ; Galli, Julio Ricardo; Utsumi, Santiago A.; Giovanini, Leonardo LuisIcon ; Rufiner, Hugo LeonardoIcon ; Milone, Diego HumbertoIcon
Fecha de publicación: 08/2018
Editorial: Elsevier
Revista: Computers and Eletronics in Agriculture
ISSN: 0168-1699
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Ciencias de la Información y Bioinformática

Resumen

Continuous monitoring of cattle foraging behavior is a major requirement for precision livestock farming applications. Several strategies have been proposed for this task but monitoring of free-ranging cattle for a long period of time has not been fully achieved yet. In this study, an algorithm is proposed for long-term analysis of foraging behavior that uses the regularity of this behavior to recognize grazing and rumination bouts. Acoustic signals are analyzed offline in two main stages: segmentation and classification. In segmentation, a complete recording is analyzed to detect regular masticatory events and to define the time boundaries of foraging activity blocks. This stage also defines blocks that correspond to no foraging activity (resting bouts). The detection of event regularity is based on the autocorrelation of the sound envelope. For classification, the energy of sound signals within a block is analyzed to detect pauses and to characterize their regularity. Rumination blocks present regular pauses, whereas grazing blocks do not. The evaluation of the proposed algorithm showed very good results for the segmentation task and activity classification. Both tasks were extensively analyzed with a new set of multidimensional metrics. Frame-based F1-score was up to 0.962, 0.891 and 0.935 for segmentation, rumination classification, and grazing classification, respectively. The average time estimation error was below 0.5 min for classification of rumination and grazing on recordings of several hours in length. In addition, a comparison for rumination time estimation was done between the proposed system and a commercial one (Hi-Tag; SCR Engineers Ltd., Netanya, Israel). The proposed algorithm showed a narrower error distribution, with a median of −2.56 min compared to −13.55 min in the commercial system. These results suggest that the proposed system can be used in practical applications.
Palabras clave: ACOUSTIC MONITORING , ACTIVITY RECOGNITION , GRAZING CATTLE BEHAVIOR , PRECISION LIVESTOCK FARMING , SIGNAL PROCESSING
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 1.137Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/87155
URL: https://linkinghub.elsevier.com/retrieve/pii/S0168169917313431
DOI: http://dx.doi.org/10.1016/j.compag.2018.06.021
Colecciones
Articulos(SINC(I))
Articulos de INST. DE INVESTIGACION EN SEÑALES, SISTEMAS E INTELIGENCIA COMPUTACIONAL
Citación
Vanrell, Sebastián Rodrigo; Chelotti, Jose Omar; Galli, Julio Ricardo; Utsumi, Santiago A.; Giovanini, Leonardo Luis; et al.; A regularity-based algorithm for identifying grazing and rumination bouts from acoustic signals in grazing cattle; Elsevier; Computers and Eletronics in Agriculture; 151; 8-2018; 392-402
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES