Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Complexity-based discrepancy measures applied to detection of apnea-hypopnea events

Rolon, Roman EmanuelIcon ; Gareis, Iván EmilioIcon ; Di Persia, Leandro EzequielIcon ; Spies, Ruben DanielIcon ; Rufiner, Hugo LeonardoIcon
Fecha de publicación: 08/2018
Editorial: John Wiley & Sons Inc
Revista: Complexity
ISSN: 1076-2787
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Ciencias de la Información y Bioinformática

Resumen

In recent years, an increasing interest in the development of discriminative methods based on sparse representations with discrete dictionaries for signal classification has been observed. It is still unclear, however, what is the most appropriate way for introducing discriminative information into the sparse representation problem. It is also unknown which is the best discrepancy measure for classification purposes. In the context of feature selection problems, several complexity-based measures have been proposed. The main objective of this work is to explore a method that uses such measures for constructing discriminative subdictionaries for detecting apnea-hypopnea events using pulse oximetry signals. Besides traditional discrepancy measures, we study a simple one called Difference of Conditional Activation Frequency (DCAF). We additionally explore the combined effect of overcompleteness and redundancy of the dictionary as well as the sparsity level of the representation. Results show that complexity-based measures are capable of adequately pointing out discriminative atoms. Particularly, DCAF yields competitive averaged detection accuracy rates of 72.57% at low computational cost. Additionally, ROC curve analyses show averaged diagnostic sensitivity and specificity of 81.88% and 87.32%, respectively. This shows that discriminative subdictionary construction methods for sparse representations of pulse oximetry signals constitute a valuable tool for apnea-hypopnea screening.
Palabras clave: Discriminative information , discrepancy measures , sparse representation , apnea-hypopnea events , pulse oximetry signal
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 697.0Kb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/87153
URL: https://www.hindawi.com/journals/complexity/2018/1435203/
DOI: http://dx.doi.org/10.1155/2018/1435203
Colecciones
Articulos(SINC(I))
Articulos de INST. DE INVESTIGACION EN SEÑALES, SISTEMAS E INTELIGENCIA COMPUTACIONAL
Citación
Rolon, Roman Emanuel; Gareis, Iván Emilio; Di Persia, Leandro Ezequiel; Spies, Ruben Daniel; Rufiner, Hugo Leonardo; Complexity-based discrepancy measures applied to detection of apnea-hypopnea events; John Wiley & Sons Inc; Complexity; 2018; 8-2018; 1-18
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES