Mostrar el registro sencillo del ítem

dc.contributor.author
Acevedo, R.  
dc.contributor.author
Atum, Y.  
dc.contributor.author
Gareis, Iván Emilio  
dc.contributor.author
Biurrun Manresa, José Alberto  
dc.contributor.author
Medina Bañuelos, V.  
dc.contributor.author
Rufiner, Hugo Leonardo  
dc.date.available
2019-10-23T19:33:13Z  
dc.date.issued
2019-03  
dc.identifier.citation
Acevedo, R.; Atum, Y.; Gareis, Iván Emilio; Biurrun Manresa, José Alberto; Medina Bañuelos, V.; et al.; A comparison of feature extraction strategies using wavelet dictionaries and feature selection methods for single trial P300-based BCI; Springer Heidelberg; Medical And Biological Engineering And Computing; 57; 3; 3-2019; 589-600  
dc.identifier.issn
0140-0118  
dc.identifier.uri
http://hdl.handle.net/11336/87150  
dc.description.abstract
The P300 component of event-related potentials (ERPs) is widely used in the implementation of brain computer interfaces (BCI). In this context, one of the main issues to solve is the binary classification problem that entails differentiating between electroencephalographic (EEG) signals with and without P300. Given the particularly unfavorable signal-to-noise ratio (SNR) in the single-trial detection scenario, this is a challenging problem in the pattern recognition field. To the best of our knowledge, there are no previous experimental studies comparing feature extraction and selection methods for single trial P300-based BCIs using unified criteria and data. In order to improve the performance and robustness of single-trial classifiers, we analyzed and compared different alternatives for the feature generation and feature selection blocks. We evaluated different orthogonal decompositions based on the wavelet transform for feature extraction, as well as different filter, wrapper, and embedded alternatives for feature selection. Accuracies over 75% were obtained for most of the analyzed strategies with a relatively low computational cost, making them attractive for a practical BCI implementation using inexpensive hardware.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Springer Heidelberg  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
BRAIN-COMPUTER INTERFACE  
dc.subject
FEATURE GENERATION AND SELECTION  
dc.subject
P300  
dc.subject.classification
Otras Ciencias de la Computación e Información  
dc.subject.classification
Ciencias de la Computación e Información  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
A comparison of feature extraction strategies using wavelet dictionaries and feature selection methods for single trial P300-based BCI  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2019-10-22T17:37:08Z  
dc.journal.volume
57  
dc.journal.number
3  
dc.journal.pagination
589-600  
dc.journal.pais
Alemania  
dc.journal.ciudad
Heidelberg  
dc.description.fil
Fil: Acevedo, R.. Universidad Nacional de Entre Rios. Facultad de Ingeniería. Departamento de Bioingeniería; Argentina  
dc.description.fil
Fil: Atum, Y.. Universidad Nacional de Entre Rios. Facultad de Ingeniería. Departamento de Bioingeniería; Argentina  
dc.description.fil
Fil: Gareis, Iván Emilio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina  
dc.description.fil
Fil: Biurrun Manresa, José Alberto. Universidad Nacional de Entre Rios. Facultad de Ingeniería. Departamento de Bioingeniería; Argentina  
dc.description.fil
Fil: Medina Bañuelos, V.. Universidad Nacional Autónoma de México; México  
dc.description.fil
Fil: Rufiner, Hugo Leonardo. Universidad Nacional del Litoral; Argentina  
dc.journal.title
Medical And Biological Engineering And Computing  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://link.springer.com/10.1007/s11517-018-1898-9  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/s11517-018-1898-9