Mostrar el registro sencillo del ítem
dc.contributor.author
Tosselli, Laura
dc.contributor.author
Bogado, Verónica Soledad
dc.contributor.author
Martínez, Ernesto Carlos
dc.date.available
2019-10-23T19:21:26Z
dc.date.issued
2018-10
dc.identifier.citation
Tosselli, Laura; Bogado, Verónica Soledad; Martínez, Ernesto Carlos; Multi-agent Learning by Trial and Error for Resource Leveling during Multi-Project (Re)scheduling; RedUNCI; Journal of Computer Science & Technology; 18; 2; 10-2018; 125-135
dc.identifier.issn
1666-6038
dc.identifier.uri
http://hdl.handle.net/11336/87145
dc.description.abstract
In a multi-project context within enterprise networks, reaching feasible solutions to the (re)scheduling problem represents a major challenge, mainly when scarce resources are shared among projects. The multi-project (re)scheduling must achieve the most efficient possible resource usage without increasing the prescribed project constraints, considering the Resource Leveling Problem (RLP), whose objective is to level the consumption of resources shared in order to minimize their idle times and to avoid overallocation conflicts. In this work, a multi-agent solution that allows solving the Resource Constrained Multi-project Scheduling Problem (RCMPSP) and the Resource Investment Problem is extended to incorporate indicators on agents? payoff functions to address the Resource Leveling Problem in a decentralized and autonomous way, through decoupled rules based on Trial-and-Error approach. The proposed agent-based simulation model is tested through a set of project instances that vary in their structure, parameters, number of resources shared, etc. Results obtained are assessed through different scheduling goals, such as project total duration, project total cost and leveling resource usage. Our results are far better compared to the ones obtained with alternative approaches. This proposal shows that the interacting agents that implement decoupled learning rules find a solution which can be understood as a Nash equilibrium.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
RedUNCI
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
AGENT-BASED SIMULATION
dc.subject
MULTI-AGENT SYSTEMS
dc.subject
FRACTAL ORGANIZATIONS
dc.subject
PROJECT-BASED MANAGEMENT
dc.subject.classification
Sistemas de Automatización y Control
dc.subject.classification
Ingeniería Eléctrica, Ingeniería Electrónica e Ingeniería de la Información
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS
dc.title
Multi-agent Learning by Trial and Error for Resource Leveling during Multi-Project (Re)scheduling
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2019-10-22T18:00:08Z
dc.journal.volume
18
dc.journal.number
2
dc.journal.pagination
125-135
dc.journal.pais
Argentina
dc.journal.ciudad
La Plata
dc.description.fil
Fil: Tosselli, Laura. Universidad Tecnológica Nacional; Argentina
dc.description.fil
Fil: Bogado, Verónica Soledad. Universidad Tecnológica Nacional; Argentina
dc.description.fil
Fil: Martínez, Ernesto Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; Argentina
dc.journal.title
Journal of Computer Science & Technology
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://journal.info.unlp.edu.ar/JCST/article/view/1085
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.24215/16666038.18.e14
Archivos asociados