Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Measuring complexity of biomedical signals

Schlotthauer, GastonIcon ; Humeau-Heurtier, Anne; Escudero, Javier; Rufiner, Hugo LeonardoIcon
Fecha de publicación: 09/2018
Editorial: John Wiley & Sons Inc
Revista: Complexity
ISSN: 1076-2787
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Otras Ciencias de la Computación e Información

Resumen

It is well known that biomedical signals, such as heart rate variability (HRV), electrocardiogram (ECG), electroencephalogram (EEG), and voice, arise from complex nonlinear dynamical systems, as the cardiovascular, nervous, or phonatory ones. Information extracted from these signals provides insights regarding the status of the underlying physiology. Complexity measures are helpful to quantitatively describe nonlinear biomedical systems and to detect changes in their dynamics that can be associated with physiological or pathological events. These measures on biomedical signals and images can be used in a wide field of applications as pathology detection, decision support systems, treatment monitoring, and temporal segmentation. They can also be used to characterize biomedical systems that gave rise to those images and time series. However, in practice, many challenges emerge when these complexity measures are applied, such as the influence of the noise, the quantization effects, the lengths of the available data, or the parameter tuning. Many of these issues are still unsolved. How to cope with these difficulties and how to obtain tools that can be employed in clinical practice are the subjects of this special issue. It is focused not only on the application of existing complexity measures on biomedical signals and images but also on the development of new complexity measure algorithms. Some interesting complexity-based works are also associated with machine learning-based strategies, automatization in parameter setting, and applications in pattern recognition problems, as well as developments and applications of novel complexity estimators for multivariate, multiscale, or multimodal data. In this context, different proposals that explore theory and applications of complexity-based measures related to biomedical signal problems were selected. After a rigorous review process, 8 papers have been accepted for this special issue.
Palabras clave: COMPLEXITY MEASURES , BIOMEDICAL SIGNALS , DIGITAL SIGNAL PROCESSING
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 1.554Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/87142
URL: https://www.hindawi.com/journals/complexity/2018/5408254/
DOI: http://dx.doi.org/10.1155/2018/5408254
Colecciones
Articulos (IBB)
Articulos de INSTITUTO DE INVESTIGACION Y DESARROLLO EN BIOINGENIERIA Y BIOINFORMATICA
Articulos(SINC(I))
Articulos de INST. DE INVESTIGACION EN SEÑALES, SISTEMAS E INTELIGENCIA COMPUTACIONAL
Citación
Schlotthauer, Gaston; Humeau-Heurtier, Anne; Escudero, Javier; Rufiner, Hugo Leonardo; Measuring complexity of biomedical signals; John Wiley & Sons Inc; Complexity; 2018; 9-2018; 1-3
Compartir
Altmétricas
 
Estadísticas
Visualizaciones: 63
Descargas: 70

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • Twitter
  • Instagram
  • YouTube
  • Sound Cloud

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

Ministerio
https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES