Mostrar el registro sencillo del ítem

dc.contributor.author
Luccioni, Bibiana Maria  
dc.contributor.author
Isla, Facundo  
dc.contributor.author
Forni, Daniele  
dc.contributor.author
Cadoni, Ezio  
dc.date.available
2019-10-23T13:33:25Z  
dc.date.issued
2018-05  
dc.identifier.citation
Luccioni, Bibiana Maria; Isla, Facundo; Forni, Daniele; Cadoni, Ezio; Modelling UHPFRC tension behavior under high strain rates; Elsevier; Cement & Concrete Composites; 91; 5-2018; 209-220  
dc.identifier.issn
0958-9465  
dc.identifier.uri
http://hdl.handle.net/11336/87064  
dc.description.abstract
The advantages of Ultra High Performance Fiber Reinforcd Concrete (UHPFRC) under static loads suggest it is a promissory material to withstand dynamic and especially extreme loads. However, the available results concerning dynamic behaviour of UHPFRC under high strain rates are still rather limited and there are some aspects that require further analysis and the development of numerical tools. A numerical model for UHPFRC is presented and applied to the simulation of high strain tension tests in this paper. The tension tests were performed in a Modified Hopkinson Bar with different strain rates and they include UHPFRC using different contents and orientations of smooth straight steel fibers. The numerical model is based on the modified mixture theory and takes into account the behaviour of the matrix and the fibers and the fiber/matrix sliding using a meso-mechanic pull-out model. The model was implemented in a non-linear dynamic finite element explicit code that constitutes a useful numerical tool for the design and analysis of structures made of this material. High strain rate tension tests were numerically simulated. The comparison of numerical and experimental results allows calibrating the material properties, validating the model and analysing the strain rate dependence of the composite and the contribution of each of the component materials and the pull-out mechanism. Tension dynamic amplification of UHPFRC is mainly due to the Ultra High Performance Concrete (UHPC) matrix and the pull-out mechanism. The dynamic amplification of the fibers pull-out mechanism is lower than that of the matrix and increases with fiber inclination.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
HIGH STRAIN RATES  
dc.subject
ULTRA HIGH PERFORMANCE FIBER REINFORCED CONCRETE  
dc.subject
FIBERS  
dc.subject
COMPOSITE  
dc.subject
NUMERICAL MODEL  
dc.subject.classification
Ingeniería Civil  
dc.subject.classification
Ingeniería Civil  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
Modelling UHPFRC tension behavior under high strain rates  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2019-10-22T17:24:58Z  
dc.journal.volume
91  
dc.journal.pagination
209-220  
dc.journal.pais
Países Bajos  
dc.journal.ciudad
Amsterdam  
dc.description.fil
Fil: Luccioni, Bibiana Maria. Universidad Nacional de Tucumán. Facultad de Ciencias Exactas y Tecnología. Instituto de Estructuras "Ing. Arturo M. Guzmán"; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán; Argentina  
dc.description.fil
Fil: Isla, Facundo. Universidad Nacional de Tucumán. Facultad de Ciencias Exactas y Tecnología. Instituto de Estructuras "Ing. Arturo M. Guzmán"; Argentina  
dc.description.fil
Fil: Forni, Daniele. Dynamat Laboratory, Supsi; Suiza  
dc.description.fil
Fil: Cadoni, Ezio. Dynamat Laboratory, Supsi; Suiza  
dc.journal.title
Cement & Concrete Composites  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0958946517304109?via%3Dihub#!  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://doi.org/10.1016/j.cemconcomp.2018.05.001