Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

From FATS to feets: Further improvements to an astronomical feature extraction tool based on machine learning

Cabral, Juan BautistaIcon ; Sánchez, Bruno OrlandoIcon ; Ramos Almendares, Felipe AlbertoIcon ; Gurovich, SebastianIcon ; Granitto, Pablo MiguelIcon ; Vanderplas, J.
Fecha de publicación: 10/2018
Editorial: Elsevier
Revista: Astronomy and Computing
ISSN: 2213-1337
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Astronomía

Resumen

Machine learning algorithms are highly useful for the classification of time series data in astronomy in this era of peta-scale public survey data releases. These methods can facilitate the discovery of new unknown events in most astrophysical areas, as well as improving the analysis of samples of known phenomena. Machine learning algorithms use features extracted from collected data as input predictive variables. A public tool called Feature Analysis for Time Series (FATS) has proved an excellent workhorse for feature extraction, particularly light curve classification for variable objects. In this study, we present a major improvement to FATS, which corrects inconvenient design choices, minor details, and documentation for the re-engineering process. This improvement comprises a new Python package called feets, which is important for future code-refactoring for astronomical software tools.
Palabras clave: ASTROINFORMATICS , FEATURE SELECTION , MACHINE LEARNING ALGORITHM , SOFTWARE AND ITS ENGINEERING , SOFTWARE POST-DEVELOPMENT ISSUE
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 240.0Kb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/87048
URL: https://www.sciencedirect.com/science/article/pii/S2213133718300581
DOI: http://dx.doi.org/10.1016/j.ascom.2018.09.005
Colecciones
Articulos(CIFASIS)
Articulos de CENTRO INT.FRANCO ARG.D/CS D/L/INF.Y SISTEM.
Articulos(IATE)
Articulos de INST.DE ASTRONOMIA TEORICA Y EXPERIMENTAL
Citación
Cabral, Juan Bautista; Sánchez, Bruno Orlando; Ramos Almendares, Felipe Alberto; Gurovich, Sebastian; Granitto, Pablo Miguel; et al.; From FATS to feets: Further improvements to an astronomical feature extraction tool based on machine learning; Elsevier; Astronomy and Computing; 25; 10-2018; 213-220
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES