Artículo
From FATS to feets: Further improvements to an astronomical feature extraction tool based on machine learning
Cabral, Juan Bautista
; Sánchez, Bruno Orlando
; Ramos Almendares, Felipe Alberto
; Gurovich, Sebastian
; Granitto, Pablo Miguel
; Vanderplas, J.
Fecha de publicación:
10/2018
Editorial:
Elsevier
Revista:
Astronomy and Computing
ISSN:
2213-1337
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Machine learning algorithms are highly useful for the classification of time series data in astronomy in this era of peta-scale public survey data releases. These methods can facilitate the discovery of new unknown events in most astrophysical areas, as well as improving the analysis of samples of known phenomena. Machine learning algorithms use features extracted from collected data as input predictive variables. A public tool called Feature Analysis for Time Series (FATS) has proved an excellent workhorse for feature extraction, particularly light curve classification for variable objects. In this study, we present a major improvement to FATS, which corrects inconvenient design choices, minor details, and documentation for the re-engineering process. This improvement comprises a new Python package called feets, which is important for future code-refactoring for astronomical software tools.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CIFASIS)
Articulos de CENTRO INT.FRANCO ARG.D/CS D/L/INF.Y SISTEM.
Articulos de CENTRO INT.FRANCO ARG.D/CS D/L/INF.Y SISTEM.
Articulos(IATE)
Articulos de INST.DE ASTRONOMIA TEORICA Y EXPERIMENTAL
Articulos de INST.DE ASTRONOMIA TEORICA Y EXPERIMENTAL
Citación
Cabral, Juan Bautista; Sánchez, Bruno Orlando; Ramos Almendares, Felipe Alberto; Gurovich, Sebastian; Granitto, Pablo Miguel; et al.; From FATS to feets: Further improvements to an astronomical feature extraction tool based on machine learning; Elsevier; Astronomy and Computing; 25; 10-2018; 213-220
Compartir
Altmétricas