Mostrar el registro sencillo del ítem
dc.contributor.author
Goldberg, Ezequiel
dc.contributor.author
Suárez, Cecilia Ana
dc.contributor.author
Alfonso, Mauricio
dc.contributor.author
Marchese, Juan
dc.contributor.author
Soba, Alejandro
dc.contributor.author
Marshall, Guillermo Ricardo
dc.date.available
2019-10-22T15:47:03Z
dc.date.issued
2018-12
dc.identifier.citation
Goldberg, Ezequiel; Suárez, Cecilia Ana; Alfonso, Mauricio; Marchese, Juan; Soba, Alejandro; et al.; Cell membrane electroporation modeling: A multiphysics approach; Elsevier Science Sa; Bioelectrochemistry; 124; 12-2018; 28-39
dc.identifier.issn
1567-5394
dc.identifier.uri
http://hdl.handle.net/11336/86859
dc.description.abstract
Electroporation-based techniques, i.e. techniques based on the perturbation of the cell membrane through the application of electric pulses, are widely used at present in medicine and biotechnology. However, the electric pulse - cell membrane interaction is not yet completely understood neither explicitly formalized. Here we introduce a Multiphysics (MP) model describing electric pulse - cell membrane interaction consisting on the Poisson equation for the electric field, the Nernst-Planck equations for ion transport (protons, hydroxides, sodium or calcium, and chloride), the Maxwell tensor and mechanical equilibrium equation for membrane deformations (with an explicit discretization of the cell membrane), and the Smoluchowski equation for membrane permeabilization. The MP model predicts that during the application of an electric pulse to a spherical cell an elastic deformation of its membrane takes place affecting the induced transmembrane potential, the pore creation dynamics and the ionic transport. Moreover, the coincidence among maximum membrane deformation, maximum pore aperture, and maximum ion uptake is predicted. Such behavior has been corroborated experimentally by previously published results in red blood and CHO cells as well as in supramolecular lipid vesicles.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Elsevier Science Sa
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
ELECTROCHEMOTHERAPY
dc.subject
ELECTROPORATION
dc.subject
ION TRANSPORT
dc.subject
MATHEMATICAL MODELING
dc.subject
MEMBRANE DEFORMATION
dc.subject.classification
Biofísica
dc.subject.classification
Ciencias Biológicas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Cell membrane electroporation modeling: A multiphysics approach
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2019-10-21T19:16:29Z
dc.journal.volume
124
dc.journal.pagination
28-39
dc.journal.pais
Países Bajos
dc.journal.ciudad
Amsterdam
dc.description.fil
Fil: Goldberg, Ezequiel. Comisión Nacional de Energía Atómica. Centro Atómico Constituyentes; Argentina
dc.description.fil
Fil: Suárez, Cecilia Ana. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física del Plasma. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física del Plasma; Argentina
dc.description.fil
Fil: Alfonso, Mauricio. Universidad de Buenos Aires; Argentina
dc.description.fil
Fil: Marchese, Juan. Universidad de Buenos Aires; Argentina
dc.description.fil
Fil: Soba, Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
dc.description.fil
Fil: Marshall, Guillermo Ricardo. Comisión Nacional de Energía Atómica. Centro Atómico Constituyentes; Argentina
dc.journal.title
Bioelectrochemistry
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.bioelechem.2018.06.010
Archivos asociados