Mostrar el registro sencillo del ítem

dc.contributor.author
Goldberg, Ezequiel  
dc.contributor.author
Suárez, Cecilia Ana  
dc.contributor.author
Alfonso, Mauricio  
dc.contributor.author
Marchese, Juan  
dc.contributor.author
Soba, Alejandro  
dc.contributor.author
Marshall, Guillermo Ricardo  
dc.date.available
2019-10-22T15:47:03Z  
dc.date.issued
2018-12  
dc.identifier.citation
Goldberg, Ezequiel; Suárez, Cecilia Ana; Alfonso, Mauricio; Marchese, Juan; Soba, Alejandro; et al.; Cell membrane electroporation modeling: A multiphysics approach; Elsevier Science Sa; Bioelectrochemistry; 124; 12-2018; 28-39  
dc.identifier.issn
1567-5394  
dc.identifier.uri
http://hdl.handle.net/11336/86859  
dc.description.abstract
Electroporation-based techniques, i.e. techniques based on the perturbation of the cell membrane through the application of electric pulses, are widely used at present in medicine and biotechnology. However, the electric pulse - cell membrane interaction is not yet completely understood neither explicitly formalized. Here we introduce a Multiphysics (MP) model describing electric pulse - cell membrane interaction consisting on the Poisson equation for the electric field, the Nernst-Planck equations for ion transport (protons, hydroxides, sodium or calcium, and chloride), the Maxwell tensor and mechanical equilibrium equation for membrane deformations (with an explicit discretization of the cell membrane), and the Smoluchowski equation for membrane permeabilization. The MP model predicts that during the application of an electric pulse to a spherical cell an elastic deformation of its membrane takes place affecting the induced transmembrane potential, the pore creation dynamics and the ionic transport. Moreover, the coincidence among maximum membrane deformation, maximum pore aperture, and maximum ion uptake is predicted. Such behavior has been corroborated experimentally by previously published results in red blood and CHO cells as well as in supramolecular lipid vesicles.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier Science Sa  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
ELECTROCHEMOTHERAPY  
dc.subject
ELECTROPORATION  
dc.subject
ION TRANSPORT  
dc.subject
MATHEMATICAL MODELING  
dc.subject
MEMBRANE DEFORMATION  
dc.subject.classification
Biofísica  
dc.subject.classification
Ciencias Biológicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Cell membrane electroporation modeling: A multiphysics approach  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2019-10-21T19:16:29Z  
dc.journal.volume
124  
dc.journal.pagination
28-39  
dc.journal.pais
Países Bajos  
dc.journal.ciudad
Amsterdam  
dc.description.fil
Fil: Goldberg, Ezequiel. Comisión Nacional de Energía Atómica. Centro Atómico Constituyentes; Argentina  
dc.description.fil
Fil: Suárez, Cecilia Ana. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física del Plasma. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física del Plasma; Argentina  
dc.description.fil
Fil: Alfonso, Mauricio. Universidad de Buenos Aires; Argentina  
dc.description.fil
Fil: Marchese, Juan. Universidad de Buenos Aires; Argentina  
dc.description.fil
Fil: Soba, Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.description.fil
Fil: Marshall, Guillermo Ricardo. Comisión Nacional de Energía Atómica. Centro Atómico Constituyentes; Argentina  
dc.journal.title
Bioelectrochemistry  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.bioelechem.2018.06.010