Artículo
Non-Riemmanian geometry, force-free magnetospheres and the generalized Grad-Shafranov equation
Fecha de publicación:
10/2018
Editorial:
World Scientific
Revista:
International Journal of Geometric Methods in Modern Physics
ISSN:
0219-8878
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
The magnetosphere structure of a magnetar is considered in the context of a theory of gravity with dynamical torsion field beyond the standard General Relativity (GR). To this end, the axially symmetric version of the Grad-Shafranov equation (GSE) is obtained in this theoretical framework. The resulting GSE solution in the case of the magnetosphere corresponds to a stream function containing also a pseudoscalar part. This function solution under axisymmetry presents a complex character that (as in the quantum field theoretical case) could be associated with an axidilaton field. Magnetar-pulsar mechanism is suggested and the conjecture about the origin of the excess energy due the GSE describing the magnetosphere dynamics is claimed. We also show that two main parameters of the electrodynamic processes (as described in GR framework by Goldreich and Julian (GJ) [Astrophys. J. 157 (1969) 869]) are modified but the electron-positron pair rate remains invariant. The possible application of our generalized equation (defined in a non-Riemannian geometry) to astrophysical scenarios involving emission of energy by gravitational waves, as described in the context of GR in [S. Capozziello, M. De Laurentis, I. De Martino, M. Formisano and D. Vernieri, Astrophys. Space Sci. 333 (2011) 29-35], is briefly discussed.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(INFINA)
Articulos de INST.DE FISICA DEL PLASMA
Articulos de INST.DE FISICA DEL PLASMA
Citación
Cirilo, Diego Julio; Non-Riemmanian geometry, force-free magnetospheres and the generalized Grad-Shafranov equation; World Scientific; International Journal of Geometric Methods in Modern Physics; 16; 1; 10-2018; 1-10
Compartir
Altmétricas