Mostrar el registro sencillo del ítem
dc.contributor.author
Mroginski, Javier Luis
dc.contributor.author
Castro, Hugo Guillermo
dc.date.available
2019-10-21T17:57:14Z
dc.date.issued
2018-09
dc.identifier.citation
Mroginski, Javier Luis; Castro, Hugo Guillermo; A metaheuristic optimization algorithm for multimodal benchmark function in a GPU architecture; Emrah Evren Kara; Communications in Advanced Mathematical Sciences; 1; 1; 9-2018; 67-83
dc.identifier.issn
2651-4001
dc.identifier.uri
http://hdl.handle.net/11336/86659
dc.description.abstract
It is well known that the numerical solution of evolutionary systems and problems based on topological design requires a high computational power. In the last years, many parallel algorithms have been developed in order to improve its performance. Among them, genetic algorithms (GAs) are one of the most popular metaheuristic algorithms inspired by Darwin´s evolution theory. From the High Performance Computing (HPC) point of view, the CUDA environment is probably the parallel computing platform and programming model that more heyday has had in recent years, mainly due to the low acquisition cost of graphics processing units (GPUs) compared to a cluster with similar functional characteristics. Consequently, the number of GPU-CUDAs present in the top 500 fastest supercomputers in the world is constantly growing. In this paper, a numerical algorithm developed in the NVIDIA CUDA platform capable of solving classical optimization functions usually employed as benchmarks is presented. The obtained results demonstrate that GPUs are a valuable tool for acceleration of GAs and may enable its use in much complex problems. Also, a sensitivity analysis is carried out in order to show the relative weight of each GA operator in the whole computational cost of the algorithm.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Emrah Evren Kara
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc/2.5/ar/
dc.subject
CUDA ENVIRONMENT
dc.subject
GENETIC ALGORITHM
dc.subject
MATHEMATICAL FUNCTION OPTIMIZATION
dc.subject
GPU ARCHITECTURE
dc.subject.classification
Otras Ingenierías y Tecnologías
dc.subject.classification
Otras Ingenierías y Tecnologías
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS
dc.title
A metaheuristic optimization algorithm for multimodal benchmark function in a GPU architecture
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2019-10-18T15:46:34Z
dc.journal.volume
1
dc.journal.number
1
dc.journal.pagination
67-83
dc.journal.pais
Turquía
dc.description.fil
Fil: Mroginski, Javier Luis. Universidad Nacional del Nordeste. Facultad de Ingeniería; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste; Argentina
dc.description.fil
Fil: Castro, Hugo Guillermo. Universidad Tecnológica Nacional. Facultad Reg. Resistencia; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Modelado e Innovación Tecnológica. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas Naturales y Agrimensura. Instituto de Modelado e Innovación Tecnológica; Argentina
dc.journal.title
Communications in Advanced Mathematical Sciences
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://dergipark.gov.tr/cams/issue/39351/459423
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.33434/cams.459423
Archivos asociados