Mostrar el registro sencillo del ítem

dc.contributor.author
Dos Santos Mendez, Gonzalo Joaquín  
dc.contributor.author
Linares, Daniel Humberto  
dc.contributor.author
Ramirez Pastor, Antonio Jose  
dc.date.available
2019-10-18T21:36:01Z  
dc.date.issued
2018-09  
dc.identifier.citation
Dos Santos Mendez, Gonzalo Joaquín; Linares, Daniel Humberto; Ramirez Pastor, Antonio Jose; Maximum cumulant method for studying condensation-evaporation phase transitions; American Physical Society; Physical Review E; 98; 3; 9-2018; 1-9  
dc.identifier.issn
2470-0053  
dc.identifier.uri
http://hdl.handle.net/11336/86514  
dc.description.abstract
In a previous paper [G. J. dos Santos, D. H. Linares, and A. J. Ramirez-Pastor, J. Stat. Mech. (2017) 07321110.1088/1742-5468/aa7df2] a methodology for the determination of the critical point of the condensation phase transition occurring in monolayers of linear adsorbates (k-mers) was presented. The maximum cumulant method was developed from the phenomenological observation that the fourth-order Binder cumulant and the isotherm inflection point are produced at the same value of chemical potential. In the present work, mathematical arguments are presented to show analytically that the previously mentioned relationship is satisfied by evaporation-condensation systems under the conditions that: (i) the surface coverage distribution function is a bimodal distribution composed of a linear combination of two normalized functions g1(θ) and g2(θ) with zero overlap and mean values θ1 and θ2, respectively; and (ii) g1(θ) and g2(θ) are unimodal distributions that are symmetric with respect to the middle point (θ1+θ2)/2. In addition, numerical results from Monte Carlo simulations of four different adsorption-desorption systems (linear k-mers on square and triangular lattices, S-shaped k-mers on square lattices and k2-mers on square lattices) are presented to check the theoretical results and to provide evidence of the general validity and robustness of the method.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
American Physical Society  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
CONDENSATION-EVAPORATION  
dc.subject
PHASE TRANSITIONS  
dc.subject
MONTE CARLO METHODS  
dc.subject.classification
Física de los Materiales Condensados  
dc.subject.classification
Ciencias Físicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Maximum cumulant method for studying condensation-evaporation phase transitions  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2019-10-15T14:12:00Z  
dc.journal.volume
98  
dc.journal.number
3  
dc.journal.pagination
1-9  
dc.journal.pais
Estados Unidos  
dc.journal.ciudad
Washington DC  
dc.description.fil
Fil: Dos Santos Mendez, Gonzalo Joaquín. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich". Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich"; Argentina  
dc.description.fil
Fil: Linares, Daniel Humberto. Universidad Nacional de San Luis. Facultad de Ciencias Físico- Matemáticas y Naturales; Argentina  
dc.description.fil
Fil: Ramirez Pastor, Antonio Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich". Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich"; Argentina  
dc.journal.title
Physical Review E  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1103/PhysRevE.98.032134  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/pre/abstract/10.1103/PhysRevE.98.032134