Mostrar el registro sencillo del ítem
dc.contributor.author
Amicarelli, Adriana Natacha
dc.contributor.author
Quintero, Olga
dc.contributor.author
Di Sciascio, Fernando Agustín
dc.date.available
2019-10-17T21:40:33Z
dc.date.issued
2014-01
dc.identifier.citation
Amicarelli, Adriana Natacha; Quintero, Olga; Di Sciascio, Fernando Agustín; Behavior comparison for biomass observers in batch processes; John Wiley & Sons Inc; Asia-Pacific Journal of Chemical Engineering; 9; 1; 1-2014; 81-92
dc.identifier.issn
1932-2143
dc.identifier.uri
http://hdl.handle.net/11336/86257
dc.description.abstract
On-line estimation of biomass concentration in batch biotechnological processes is an active area of research because normally, the biomass is the desired process product output, and also because it is necessary for control purposes to replace the unavailable biomass concentration measurements with reliable and robust on-line estimations. This work presents five different alternatives to face the problem of biomass estimation in a particular batch bioprocess (δ-endotoxins production of Bacillus thuringiensis), namely: a phenomenological estimator based on dissolved oxygen balance, an extended Kalman filter estimator, a Gaussian process regression-based estimator, an artificial neural networks-based estimator, and finally, an estimator based on information fusion by a decentralized Kalman filter. Each proposed biomass estimation method has its own advantages and drawbacks according to their ability to take into account the model uncertainties and the measurement errors. First, the design techniques of these five biomass estimators are exposed, and finally, the behavior of each estimation method is compared. The availability of efficient biomass estimators is of great importance for engineers because, on the one hand, it allows developing new control strategies for other bioprocess variables such as for instance: the growth rate of the microorganism, the dissolved oxygen concentration, and so on. On the other hand, it is also important to improve the performance of the bioprocess optimization procedure. This work also aims to show the evolution on biomass estimation techniques from classical to more contemporary approaches, such as the design based on neural networks and Gaussian processes regression.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
John Wiley & Sons Inc
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
BATCH PROCESSES
dc.subject
BIOMASS ESTIMATION
dc.subject
BIOPROCESS MODEL
dc.subject
GAUSSIAN PROCESS
dc.subject
STATE OBSERVERS
dc.subject.classification
Sistemas de Automatización y Control
dc.subject.classification
Ingeniería Eléctrica, Ingeniería Electrónica e Ingeniería de la Información
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS
dc.title
Behavior comparison for biomass observers in batch processes
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2019-10-17T13:43:22Z
dc.journal.volume
9
dc.journal.number
1
dc.journal.pagination
81-92
dc.journal.pais
Estados Unidos
dc.journal.ciudad
Nueva York
dc.description.fil
Fil: Amicarelli, Adriana Natacha. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Automática. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; Argentina
dc.description.fil
Fil: Quintero, Olga. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Automática. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; Argentina
dc.description.fil
Fil: Di Sciascio, Fernando Agustín. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Automática. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; Argentina
dc.journal.title
Asia-Pacific Journal of Chemical Engineering
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1002/apj.1748
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://onlinelibrary.wiley.com/doi/abs/10.1002/apj.1748
Archivos asociados