Mostrar el registro sencillo del ítem
dc.contributor.author
Venier, César Martín
dc.contributor.author
Marquez Damian, Santiago
dc.contributor.author
Nigro, Norberto Marcelo
dc.date.available
2019-10-17T21:01:34Z
dc.date.issued
2018-04
dc.identifier.citation
Venier, César Martín; Marquez Damian, Santiago; Nigro, Norberto Marcelo; Assessment of gas-particle flow models for pseudo-2D fluidized bed applications; Taylor & Francis; Chemical Engineering Communications; 205; 4; 4-2018; 456-478
dc.identifier.issn
0098-6445
dc.identifier.uri
http://hdl.handle.net/11336/86226
dc.description.abstract
The aim of this work is to provide more insight into the general modeling criteria for simulating pseudo-2D bubbling fluidized beds. For this purpose, two experimental-based problems are studied. First, a fluidized bed with a high-speed central jet problem is analyzed. A qualitative study of the first bubble indicates that the bubble shape prediction is highly sensitive to the frictional model adopted. The most accurate results in terms of bubble shape and detachment time are given by a frictional model that relates the strain-rate fluctuations with the granular temperature. Second, a uniformly fluidized bed problem in bubbling regime is considered. For this case, the drag models and boundary conditions for the particulate phase are investigated. Time-averaged solid phase velocity profiles are compared with the results of the literature where it is found that no-slip conditions (or partial slip with a high specularity coefficient) are more appropriate than slip conditions at the walls for these regimes. Regarding the drag force, although none of the models presented could match the experimental velocity predictions for low gas velocities at the lower region of the bed, the Di Felice model produces the most accurate results for the whole range of regimes considered.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Taylor & Francis
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
COMPUTATIONAL FLUID DYNAMICS
dc.subject
DRAG MODEL
dc.subject
FLUIDIZED BED
dc.subject
FRICTIONAL THEORY
dc.subject
KTGF
dc.subject.classification
Otras Ingeniería Química
dc.subject.classification
Ingeniería Química
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS
dc.title
Assessment of gas-particle flow models for pseudo-2D fluidized bed applications
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2019-10-16T19:28:07Z
dc.journal.volume
205
dc.journal.number
4
dc.journal.pagination
456-478
dc.journal.pais
Reino Unido
dc.journal.ciudad
Londres
dc.description.fil
Fil: Venier, César Martín. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Centro de Investigaciones en Métodos Computacionales. Universidad Nacional del Litoral. Centro de Investigaciones en Métodos Computacionales; Argentina
dc.description.fil
Fil: Marquez Damian, Santiago. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Centro de Investigaciones en Métodos Computacionales. Universidad Nacional del Litoral. Centro de Investigaciones en Métodos Computacionales; Argentina
dc.description.fil
Fil: Nigro, Norberto Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Centro de Investigaciones en Métodos Computacionales. Universidad Nacional del Litoral. Centro de Investigaciones en Métodos Computacionales; Argentina. Universidad Tecnológica Nacional; Argentina
dc.journal.title
Chemical Engineering Communications
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.tandfonline.com/doi/full/10.1080/00986445.2017.1403907
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1080/00986445.2017.1403907
Archivos asociados