Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Robust timing and motor patterns by taming chaos in recurrent neural networks

Laje, RodrigoIcon ; Buonomano, Dean V.
Fecha de publicación: 07/2013
Editorial: Nature Publishing Group
Revista: Nature Neuroscience.
ISSN: 1097-6256
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Biología

Resumen

The brain's ability to tell time and produce complex spatiotemporal motor patterns is critical for anticipating the next ring of a telephone or playing a musical instrument. One class of models proposes that these abilities emerge from dynamically changing patterns of neural activity generated in recurrent neural networks. However, the relevant dynamic regimes of recurrent networks are highly sensitive to noise; that is, chaotic. We developed a firing rate model that tells time on the order of seconds and generates complex spatiotemporal patterns in the presence of high levels of noise. This is achieved through the tuning of the recurrent connections. The network operates in a dynamic regime that exhibits coexisting chaotic and locally stable trajectories. These stable patterns function as 'dynamic attractors' and provide a feature that is characteristic of biological systems: the ability to 'return' to the pattern being generated in the face of perturbations.
Palabras clave: NEUROSCIENCE , TIME PROCESSING , NEURAL NETWORKS , NONLINEAR DYNAMICS
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 2.921Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/86221
DOI: http://dx.doi.org/10.1038/nn.3405
URL: https://www.nature.com/articles/nn.3405
Colecciones
Articulos(SEDE CENTRAL)
Articulos de SEDE CENTRAL
Citación
Laje, Rodrigo; Buonomano, Dean V.; Robust timing and motor patterns by taming chaos in recurrent neural networks; Nature Publishing Group; Nature Neuroscience.; 16; 7; 7-2013; 925-933
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES