Mostrar el registro sencillo del ítem

dc.contributor.author
Fasce, Diana Patricia  
dc.contributor.author
Williams, Roberto Juan Jose  
dc.contributor.author
Matejka, Libor  
dc.contributor.author
Plestil, Josef  
dc.contributor.author
Brus, Jiri  
dc.contributor.author
Serrano, Berna  
dc.contributor.author
Cabanelas, Juan C.  
dc.contributor.author
Baselga, Juan  
dc.date.available
2019-10-16T18:21:36Z  
dc.date.issued
2006-05  
dc.identifier.citation
Fasce, Diana Patricia; Williams, Roberto Juan Jose; Matejka, Libor; Plestil, Josef; Brus, Jiri; et al.; Photoluminescence of bridged silsesquioxanes containing urea or urethane groups with nanostructures generated by the competition between the rates of self-assembly of organic domains and the inorganic polycondensation; American Chemical Society; Macromolecules; 39; 11; 5-2006; 3794-3801  
dc.identifier.issn
0024-9297  
dc.identifier.uri
http://hdl.handle.net/11336/86037  
dc.description.abstract
The aim of this study was to investigate the changes produced in the nanostructures and the photoluminescence spectra of bridged silsesquioxanes containing urea or urethane groups, by varying the relative rates between the self-assembly of organic domains and the inorganic polycondensation. Precursors of the bridged silsesquioxanes were 4,4′-[1,3-phenylenebis(1- methylethylidene)]bis(aniline) and 4,4′-isopropylidenediphenol, end-capped with 3-isocyanatopropyltriethoxysilane. The inorganic polycondensation was produced using either high or low formic acid concentrations, leading to transparent films with different nanostructures as revealed by FTIR, SAXS, and 29Si NMR spectra. For the bridged silsesquioxanes containing urea groups the self-assembly of organic domains was much faster than the inorganic polycondensation for both formic acid concentrations. However, the arrangement was more regular and the short-range order higher when the rate of inorganic polycondensation was lower. The photoluminescence spectra of the most ordered structures revealed the presence of two main processes: radiative recombinations in inorganic clusters and photoinduced proton-transfer generating NH 2+ and N- defects and their subsequent radiative recombination. In the less-ordered urea-bridged silsesquioxanes a third process was present assigned to a photoinduced proton transfer in H-bonds exhibiting a broad range of strengths. For urethane-bridged silsesquioxanes the driving force for the self-assembly of organic bridges was lower than for urea-bridged silsesquioxanes. When the synthesis was performed with a high formic acid concentration, self-assembled structures were not produced. Instead, large inorganic domains composed of small inorganic clusters were generated. Self-assembly of organic domains took place only when employing low polycondensation rates. For both materials the photoluminescence was mainly due to radiative processes within inorganic clusters and varied significantly with their state of aggregation.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
American Chemical Society  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Photoluminescence  
dc.subject
Bridged Silsesquioxane  
dc.subject
Urea  
dc.subject
Urethane  
dc.subject
Self-Assembly  
dc.subject.classification
Físico-Química, Ciencia de los Polímeros, Electroquímica  
dc.subject.classification
Ciencias Químicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.subject.classification
Ingeniería de los Materiales  
dc.subject.classification
Ingeniería de los Materiales  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
Photoluminescence of bridged silsesquioxanes containing urea or urethane groups with nanostructures generated by the competition between the rates of self-assembly of organic domains and the inorganic polycondensation  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2019-08-27T18:48:07Z  
dc.journal.volume
39  
dc.journal.number
11  
dc.journal.pagination
3794-3801  
dc.journal.pais
Estados Unidos  
dc.description.fil
Fil: Fasce, Diana Patricia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; Argentina  
dc.description.fil
Fil: Williams, Roberto Juan Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; Argentina  
dc.description.fil
Fil: Matejka, Libor. Biology Centre of the Academy of Sciences of the Czech Republic; República Checa  
dc.description.fil
Fil: Plestil, Josef. Biology Centre of the Academy of Sciences of the Czech Republic; República Checa  
dc.description.fil
Fil: Brus, Jiri. Biology Centre of the Academy of Sciences of the Czech Republic; República Checa  
dc.description.fil
Fil: Serrano, Berna. Universidad Carlos III de Madrid; España  
dc.description.fil
Fil: Cabanelas, Juan C.. Universidad Carlos III de Madrid; España  
dc.description.fil
Fil: Baselga, Juan. Universidad Carlos III de Madrid; España  
dc.journal.title
Macromolecules  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://pubs.acs.org/doi/abs/10.1021/ma052105y  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1021/ma052105y