Artículo
Symmetric implication zroupoids and identities of Bol–Moufang type
Fecha de publicación:
07/2018
Editorial:
Springer
Revista:
Soft Computing - (Print)
ISSN:
1472-7643
e-ISSN:
1433-7479
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
An algebra A= ⟨ A, → , 0 ⟩ , where → is binary and 0 is a constant, is called an implication zroupoid (I-zroupoid, for short) if A satisfies the identities: (I): (x→y)→z≈((z′→x)→(y→z)′)′, and (I0): 0 ′ ′≈ 0 , where x′: = x→ 0. An implication zroupoid is symmetric if it satisfies the identities: x′ ′≈ x and (x→y′)′≈(y→x′)′. An identity is of Bol–Moufang type if it contains only one binary operation symbol, one of its three variables occurs twice on each side, each of the other two variables occurs once on each side, and the variables occur in the same (alphabetical) order on both sides of the identity. In this paper, we will present a systematic analysis of all 60 identities of Bol–Moufang type in the variety S of symmetric I-zroupoids. We show that 47 of the subvarieties of S, defined by the identities of Bol–Moufang type, are equal to the variety SL of ∨ -semilattices with the least element 0 and one of others is equal to S. Of the remaining 12, there are only three distinct ones. We also give an explicit description of the poset of the (distinct) subvarieties of S of Bol–Moufang type.
Palabras clave:
SYMMETRIC IMPLICATION ZROUPOID
,
IDENTIFICATION OF BOL-MOUFANG TYPE
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(INMABB)
Articulos de INST.DE MATEMATICA BAHIA BLANCA (I)
Articulos de INST.DE MATEMATICA BAHIA BLANCA (I)
Citación
Cornejo, Juan Manuel; Sankappanavar, Hanamantagouda P.; Symmetric implication zroupoids and identities of Bol–Moufang type; Springer; Soft Computing - (Print); 22; 13; 7-2018; 4319-4333
Compartir
Altmétricas