Mostrar el registro sencillo del ítem
dc.contributor.author
Pradolini, Gladis Guadalupe
dc.contributor.author
Recchi, Diana Jorgelina
dc.date.available
2019-10-16T17:28:14Z
dc.date.issued
2018-03
dc.identifier.citation
Pradolini, Gladis Guadalupe; Recchi, Diana Jorgelina; Two-weighted estimates for generalized fractional maximal operators on non-homogeneous spaces; Czech Academy of Sciences; Czechoslovak Mathematical Journal; 68; 1; 3-2018; 77-94
dc.identifier.issn
0011-4642
dc.identifier.uri
http://hdl.handle.net/11336/86013
dc.description.abstract
Let μ be a nonnegative Borel measure on Rd satisfying that μ(Q) ⩽ l(Q)n for every cube Q ⊂ Rn, where l(Q) is the side length of the cube Q and 0 < n ⩽ d. We study the class of pairs of weights related to the boundedness of radial maximal operators of fractional type associated to a Young function B in the context of non-homogeneous spaces related to the measure μ. Our results include two-weighted norm and weak type inequalities and pointwise estimates. Particularly, we give an improvement of a two-weighted result for certain fractional maximal operator proved in W.Wang, C. Tan, Z. Lou (2012).
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Czech Academy of Sciences
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
GENERALIZED FRACTIONAL OPERATOR
dc.subject
NON-HOMOGENEOUS SPACE
dc.subject
WEIGHT
dc.subject.classification
Matemática Pura
dc.subject.classification
Matemáticas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Two-weighted estimates for generalized fractional maximal operators on non-homogeneous spaces
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2019-10-09T14:17:00Z
dc.identifier.eissn
1572-9141
dc.journal.volume
68
dc.journal.number
1
dc.journal.pagination
77-94
dc.journal.pais
República Checa
dc.description.fil
Fil: Pradolini, Gladis Guadalupe. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional del Litoral. Facultad de Ingeniería Química. Departamento de Matemáticas; Argentina
dc.description.fil
Fil: Recchi, Diana Jorgelina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina
dc.journal.title
Czechoslovak Mathematical Journal
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/1612.05789
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://articles.math.cas.cz/10.21136/CMJ.2018.0337-16
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.21136/CMJ.2018.0337-16
Archivos asociados