Artículo
Self-Dual Configurations in a Generalized Abelian Chern-Simons-Higgs Model with Explicit Breaking of the Lorentz Covariance
Fecha de publicación:
07/2016
Editorial:
Hindawi Publishing Corporation
Revista:
Advances in High Energy Physics
ISSN:
1687-7357
e-ISSN:
1687-7365
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
We have studied the existence of self-dual solitonic solutions in a generalization of the Abelian Chern-Simons-Higgs model. Such a generalization introduces two different nonnegative functions, ω 1 (| φ |) and ω (| φ |), which split the kinetic term of the Higgs field, | D μ φ | 2 → ω 1 (| φ |) | D 0 φ | 2 - ω (| φ |) | D k φ | 2, breaking explicitly the Lorentz covariance. We have shown that a clean implementation of the Bogomolnyi procedure only can be implemented whether ω (| φ |) ∝ β | φ | 2 β - 2 with β ≥ 1. The self-dual or Bogomolnyi equations produce an infinity number of soliton solutions by choosing conveniently the generalizing function ω 1 (| φ |) which must be able to provide a finite magnetic field. Also, we have shown that by properly choosing the generalizing functions it is possible to reproduce the Bogomolnyi equations of the Abelian Maxwell-Higgs and Chern-Simons-Higgs models. Finally, some new self-dual | φ | 6 -vortex solutions have been analyzed from both theoretical and numerical point of view.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IFISUR)
Articulos de INSTITUTO DE FISICA DEL SUR
Articulos de INSTITUTO DE FISICA DEL SUR
Citación
Rodolfo Casana; Sourrouille, Lucas; Self-Dual Configurations in a Generalized Abelian Chern-Simons-Higgs Model with Explicit Breaking of the Lorentz Covariance; Hindawi Publishing Corporation; Advances in High Energy Physics; 2016; 7-2016; 1-8
Compartir
Altmétricas