Mostrar el registro sencillo del ítem

dc.contributor.author
Silva, Luis O.  
dc.contributor.author
Toloza, Julio Hugo  
dc.date.available
2019-10-10T18:39:00Z  
dc.date.issued
2019-09  
dc.identifier.citation
Silva, Luis O.; Toloza, Julio Hugo; Selfadjoint extensions of the multiplication operator in de Branges spaces as singular rank-one perturbations; Taylor & Francis; Complex Variables and Elliptic Equations; 64; 9; 9-2019; 1477-1499  
dc.identifier.issn
1747-6933  
dc.identifier.uri
http://hdl.handle.net/11336/85579  
dc.description.abstract
We derive a description of the family of canonical selfadjoint extensions of the operator of multiplication in a de Branges space in terms of singular rank-one perturbations using distinguished elements from the set of functions associated with a de Branges space. The scale of rigged Hilbert spaces associated with this construction is also studied from the viewpoint of de Branges's theory.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Taylor & Francis  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
46E22  
dc.subject
47A70  
dc.subject
47B25  
dc.subject
DE BRANGES SPACES  
dc.subject
SCALE OF HILBERT SPACES  
dc.subject
SINGULAR RANK-ONE PERTURBATIONS  
dc.subject
V. BOLOTNIKOV  
dc.subject.classification
Matemática Pura  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Selfadjoint extensions of the multiplication operator in de Branges spaces as singular rank-one perturbations  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2019-10-09T14:16:53Z  
dc.journal.volume
64  
dc.journal.number
9  
dc.journal.pagination
1477-1499  
dc.journal.pais
Reino Unido  
dc.description.fil
Fil: Silva, Luis O.. Universidad Nacional Autónoma de México; México  
dc.description.fil
Fil: Toloza, Julio Hugo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina  
dc.journal.title
Complex Variables and Elliptic Equations  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.tandfonline.com/doi/full/10.1080/17476933.2018.1536701  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1080/17476933.2018.1536701  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1706.09400