Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Transfer of multivariate classification models applied to digital images and fluorescence spectroscopy data

Milanez, Karla Danielle Tavares Melo; Nóbrega, Thiago César Araújo; Silva Do Nascimento, DanielleIcon ; Insausti, MatíasIcon ; Pontes, Márcio José Coelho
Fecha de publicación: 07/2017
Editorial: Elsevier Science
Revista: Microchemical Journal
ISSN: 0026-265X
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Química Analítica

Resumen

This work evaluates the use of transfer of classification models for identifying adulteration of extra virgin olive oil (EVOO) samples involving, separately, two analytical techniques: fluorescence spectroscopy and digital imaging. The chemometric procedures, including development of classification models and application of classification transfer methods, were performed individually for each analytical technique. Methods of direct standardization (DS) and piecewise direct standardization (PDS) were applied to transfer samples sets in order to estimate an adjustment function and apply it to a samples set measured by the secondary instrument. For purposes of comparison, classification models were built based on linear discriminant analysis (LDA) with previous selection of variables by the successive projections algorithm (SPA), and partial least squares discriminant analysis (PLS-DA). The performance of the classification models was evaluated according to the number of errors and correct classification rate (CCR) for the prediction set measured by the secondary instrument. Before standardization, SPA-LDA and PLS-DA models achieved the same CCR using two analytical techniques: 54% for fluorescence emission spectra and 47% for histograms of digital images. After the standardization, a substantial increase of the CCR was observed. For the SPA-LDA models, a CCR of 88% was obtained for the fluorescence emission spectra and 82% for the histograms of the digital images. The PLS-DA classification models reached 85% and 76% of CCR for the fluorescence and imaging data, respectively, after standardization. These results demonstrate the efficiency of standardization procedures applied to multivariate classification models developed from fluorescence spectroscopy and digital images.
Palabras clave: ADULTERATION , CLASSIFICATION TRANSFER , DIGITAL IMAGES , EXTRA VIRGIN OLIVE OIL , FLUORESCENCE SPECTROSCOPY
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 1.148Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/85571
DOI: http://dx.doi.org/10.1016/j.microc.2017.03.004
URL: https://www.sciencedirect.com/science/article/pii/S0026265X16307378
Colecciones
Articulos(INQUISUR)
Articulos de INST.DE QUIMICA DEL SUR
Citación
Milanez, Karla Danielle Tavares Melo; Nóbrega, Thiago César Araújo; Silva Do Nascimento, Danielle; Insausti, Matías; Pontes, Márcio José Coelho; Transfer of multivariate classification models applied to digital images and fluorescence spectroscopy data; Elsevier Science; Microchemical Journal; 133; 7-2017; 669-675
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES